News | Neuro Imaging | March 22, 2019

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

Researchers use PET and MRI to show alcohol significantly affects brain glucose metabolism and regional brain activity

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improves our understanding of how alcohol affects the brain, according to new research by scientists at the National Institutes of Health. The new approach for characterizing brain energetic patterns could also be useful for studying other neuropsychiatric diseases. A report of the findings is now online in Nature Communications.1

“The brain uses a lot of energy compared to other body organs, and the association between brain activity and energy utilization is an important marker of brain health,” said George F. Koob, Ph.D., director of the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of NIH, which funded the study. “This study introduces a new way of characterizing how brain activity is related to its consumption of glucose, which could be very useful in understanding how the brain uses energy in health and disease.”

The research was led by Ehsan Shokri-Kojori, Ph.D., and Nora D. Volkow, M.D., of the NIAAA Laboratory of Neuroimaging. Volkow is also the director of the National Institute on Drug Abuse at NIH. In previous studies, they and their colleagues have shown that alcohol significantly affects brain glucose metabolism, a measure of energy use, as well as regional brain activity, which is assessed through changes in blood oxygenation.

“The findings from this study highlight the relevance of energetics for ensuring normal brain function and reveal how it is disrupted by excessive alcohol consumption,” said Volkow.

In their new study, the researchers combined human brain imaging techniques, including FDG-positron emission tomography (PET) and magnetic resonance imaging (MRI), for measuring glucose metabolism and neuronal activity to derive new measures, which they termed power and cost.

“We measured power by observing to what extent brain regions are active and use energy,” explained Shokri-Kojori. “We measured cost of brain regions by observing to what extent their energy use exceeds their underlying activity.”

In a group of healthy volunteers, the researchers showed that different brain regions that serve distinct functions have notably different power and different cost. They then investigated the effects of alcohol on these new measures by assessing a group of people that included light drinkers and heavy drinkers and found that both acute and chronic exposure to alcohol affected power and cost of brain regions.

“In heavy drinkers, we saw less regional power for example in the thalamus, the sensory gateway, and frontal cortex of the brain, which is important for decision making,” said Shokri-Kojori. “These decreases in power were interpreted to reflect toxic effects of long-term exposure to alcohol on the brain cells.”

The researchers also found a decrease in power during acute alcohol exposure in the visual regions, which was related to disruption of visual processing. At the same time, visual regions had the most significant decreases in cost of activity during alcohol intoxication, which is consistent with the reliance of these regions on alternative energy sources such as acetate, a byproduct of alcohol metabolism.

They conclude that despite widespread decreases in glucose metabolism in heavy drinkers compared to light drinkers, heavy drinking shifts the brain toward less efficient energetic states. Future studies are needed to investigate the mechanisms contributing to this relative inefficiency.

“Studying energetic signatures of brain regions in different neuropsychiatric diseases is an important future direction, as the measures of power and cost may provide new multimodal biomarkers for such disorders,” said Shokri-Kojori.

For more information: www.nature.com/ncomms

Reference

1. Shokri-Kojori E., Tomasi D., Alipanahi B., et al. Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain. Nature Communications, Feb. 11, 2019. https://doi.org/10.1038/s41467-019-08546-x

Related Content

MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Study Explores Magnetic Nanoparticles as Bimodal Imaging Agent for PET/MRI

Image courtesy of MR Solutions.

News | PET-MRI | May 23, 2019
Researchers from Bourgogne University in Dijon, France, showed that use of superparamagnetic iron oxide nanoparticles (...
Proton Therapy Lowers Risk of Side Effects Compared to Conventional Radiation
News | Proton Therapy | May 23, 2019
Cancer patients getting proton therapy instead of traditional photon radiation are at a significantly lower risk of...
VolparaDensity With Tyrer-Cuzick Model Improves Breast Cancer Risk Stratification
News | Breast Density | May 22, 2019
Research has demonstrated use of Volpara Solutions' VolparaDensity software in combination with the Tyrer-Cuzick Breast...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
MaxQ AI Launches Accipio Ax Slice-Level Intracranial Hemorrhage Detection
Technology | Computer-Aided Detection Software | May 21, 2019
Medical diagnostic artificial intelligence (AI) company MaxQ AI announced that Accipio Ax will begin shipping in August...
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
Partial Breast Irradiation Effective, Convenient Treatment Option for Low-Risk Breast Cancer
News | Radiation Therapy | May 20, 2019
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast...
AI Detects Unsuspected Lung Cancer in Radiology Reports, Augments Clinical Follow-up
News | Artificial Intelligence | May 20, 2019
Digital Reasoning announced results from its automated radiology report analytics research. In a series of experiments...