Technology | Artificial Intelligence | December 14, 2017

GE and NVIDIA Unveil Artificial Intelligence Upgrades to CT, Ultrasound and Analytics Solutions

RSNA 2017 offerings highlighted by new Revolution Frontier CT, powered by NVIDIA, that is two times faster for image processing

GE and NVIDIA Unveil Artificial Intelligence Upgrades to CT, Ultrasound and Analytics Solutions

December 14, 2017 — At the 2017 Radiological Society of North America (RSNA) Annual Meeting, GE Healthcare and NVIDIA announced a series of imaging equipment advances powered by NVIDIA’s artificial intelligence (AI) computing platform. The announcements included the new Revolution Frontier computed tomography (CT) system, advancements to the Vivid E95 4-D Ultrasound and development of GE Healthcare’s Applied Intelligence analytics platform.

The new CT system in the Revolution Family is two times faster in imaging processing than its predecessor, due to its use of NVIDIA’s AI computing platform. The Revolution Frontier is U.S. Food and Drug Administration (FDA)-cleared and expected to deliver better clinical outcomes in liver lesion detection and kidney lesion characterization because of its speed – potentially reducing the need for unnecessary follow-ups, benefiting patients with compromised renal function and reducing non-interpretable scans with Gemstone Spectral Imaging Metal Artefact Reduction (GSI MAR).

NVIDIA is working with GE Healthcare to spread its application in healthcare. GPU-accelerated deep learning solutions can be used to design more sophisticated neural networks for healthcare and medical applications — from real-time medical condition assessment to point-of-care interventions to predictive analytics for clinical decision-making. For patients, the partnership aims to drive lower radiation doses, faster exam times and higher quality medical imaging.

GE Healthcare and NVIDIA also announced the following at RSNA:

  • The Vivid E95 4D Ultrasound System, on display at RSNA, uses NVIDIA GPUs to provide fast, accurate visualization and quantification while streamlining workflows across the cSound imaging platform. NVIDIA GPUs accelerate reconstruction and visualization of blood flow and improve 2-D and 4-D imaging for echo lab and interventional deployments;
  • Modules of the new Applied Intelligence analytics platform will use NVIDIA GPUs, the NVIDIA CUDA parallel computing platform and the NVIDIA GPU Cloud container registry to accelerate the creation, deployment and consumption of deep learning algorithms in new healthcare analytic applications that will be seamlessly integrated into clinical and operational workflows and equipment.

For more information: www.gehealthcare.com

Related Content

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI.

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI. Graphic courtesy of the Radiological Society of North America.

News | Artificial Intelligence | December 11, 2019
December 11, 2019 — Deep learning, a type of arti...
EMR patient portal on a smartphone
News | Electronic Medical Records (EMR) | December 11, 2019
December 11, 2019 — Despite the numerous benefits associated with patients accessing their medical records, a new stu
CT_Pediatric_Scan_Philips_Vereos_CT_RSNA 2016

Image courtesy of Philips Healthcare

News | Pediatric Imaging | December 10, 2019
December 10, 2019 — More than half of people who received...
MRI Exablate neuro helmet from INSIGHTEC

MRI Exablate neuro helmet from INSIGHTEC. Image courtesy of Ali Rezai, M.D., and RSNA.

News | Clinical Trials | December 03, 2019
December 3, 2019 — Focused ultrasound is a safe and effective way to target and open areas of the blood-brain barrier
#RSNA19 A sophisticated type of artificial intelligence (AI) can detect clinically meaningful chest X-ray findings as effectively as experienced radiologists, according to a study published in the journal Radiology.

Image courtesy of GE Healthcare

News | Artificial Intelligence | December 03, 2019
December 3, 2019 — A sophisticated type of...
REiLI AI platform auto segmentation.
News | Artificial Intelligence | November 30, 2019
December 1, 2019 — Fujifilm Medical Systems U.S.A.