Now a research team — led by Tohoku University Professor, Wataru Yashiro — has developed a new method using intense synchrotron radiation that produces higher quality images within milliseconds.

How the bent crystal changes the direction of the X-rays. Image courtesy of Tohoku University


May 15, 2020 — Many will undergo a computed tomography (CT) scan at some point in their lifetime — being slid in and out of a tunnel as a large machine rotates around. X-ray computed tomography, better known by its acronym CT, is a widely used method of obtaining cross-sectional images of objects.

Now a research team — led by Tohoku University Professor, Wataru Yashiro — has developed a new method using intense synchrotron radiation that produces higher quality images within milliseconds.

High-speed, high-resolution X-ray CT is currently possible using intense synchrotron radiation. However, this requires samples to be rotated at high speed to obtain images from many directions. This would make CT scans more akin to a rollercoaster ride!

Extreme rotation also makes controlling the temperature or atmosphere of the sample impossible.

Nevertheless, the research team solved this conundrum by creating an optical system that splits single synchrotron X-ray beams into many. These beams then shine onto the sample from different directions at the same time; thus, negating the need to rotate the sample.

This "multi-beam" method is no easy task since the direction of X-rays cannot be easily changed. Unlike visible light, X-rays interact with matters weakly, making it difficult to utilize mirrors and prisms to change the path of the beams.

To overcome this, the research team used micro-fabrication techniques to create uniquely shaped crystals. These crystals were then bent in the shape of a hyperbola. By combining three rows of crystals, the multi-beam optics were able to cover an angle of ±70°.

Carrying out their experiments at the SPring-8 synchrotron radiation facility, the research team took advantage of a cutting-edge compressed-sensing algorithm that needs only a few dozen projection images for image reconstruction.

"The invention makes 3-D observations of living beings and liquid samples within milliseconds possible" exclaimed Yashiro. "It is possible application is wide-spread, from fundamental material science to life sciences to industry."

For more information: www.tohoku.ac.jp/en/


Related Content

News | RSNA

May 7, 2024 — The Radiological Society of North America (RSNA) and the Radiological and Diagnostic Imaging Society of ...

Time May 07, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

May 7, 2024 — The Magna Cum Laude Award-Winning Online Poster presented during the 124th ARRS Annual Meeting showed a ...

Time May 07, 2024
arrow
News | ARRS

May 7, 2024 — The American Roentgen Ray Society (ARRS) announced that Philip Costello, MD, the 118th ARRS President and ...

Time May 07, 2024
arrow
News | Treatment Planning

May 6, 2024 — Elekta announced the acquisition of Philips Healthcare’s Pinnacle Treatment Planning System (TPS) patent ...

Time May 06, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

May 6, 2024 — Hvidovre Hospital has the world's first prototype of a sensor capable of detecting errors in MRI scans ...

Time May 06, 2024
arrow
Feature | Digital Radiography (DR) | By Melinda Taschetta-Millane

Digital radiography (DR) continues to advance at a rapid pace with today’s technological innovations and evolving ...

Time May 06, 2024
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

One on One interviews with radiology trailblazers and historic FDA clearances made the top-read list for April. Take a ...

Time May 03, 2024
arrow
Feature | Radiation Dose Management | By Christine Book

Advances in the growing radiation dose management market are continually helping those who administer treatment to focus ...

Time May 03, 2024
arrow
News | Pediatric Imaging

May 2, 2024 — Head and abdominal trauma is a leading cause of death for children. About 1%–2% of children who come to ...

Time May 02, 2024
arrow
Feature | Radiology Business

Beginning this spring, ITN will begin sending out a bi-monthly survey to our readers on a variety of topics, which we ...

Time May 02, 2024
arrow
Subscribe Now