A newly discovered radionuclide-based agent (CB-2PA-NT) has been shown to have high tumor uptake, sustained tumor retention, and high contrast in preclinical models, making it a prime candidate for a novel theranostics approach

Figure 1. Representative PET image of three leading compounds in H1299 tumor mouse at 24 hours post-injection at 10 %ID/g scale.


June 28, 2023 — A newly discovered radionuclide-based agent (CB-2PA-NT) has been shown to have high tumor uptake, sustained tumor retention, and high contrast in preclinical models, making it a prime candidate for a novel theranostics approach. Targeting the neurotensin receptors (NTSRs) that are present in a variety of cancers, CB-2PA-NT has the potential to significantly expand the scope of precision medicine. This research was presented at the 2023 Society of Nuclear Medicine and Molecular Imaging Annual Meeting.

NTSRs are overexpressed in a variety of cancers, including lung, colorectal, breast, pancreatic and prostate cancers. Recently, several attempts have been made to synthesize radiometal-labeled agents that target the receptor NTSR1. However, most of those attempts have demonstrated only moderate tumor uptake and retention.

“Building on previous research and experience, my colleagues and I discovered that the cross-linked polyamine moiety can greatly improve tumor uptake and maintain high contrast,” said Xinrui Ma, MPH, a doctoral student at the University of North Carolina in Chapel Hill, North Carolina. “In this study we tested a series of NTSR1 antagonists to see which was most useful for imaging and therapy applications.”

A series of NTSR1 antagonists were synthesized with variable propylamine linker length and different chelators (CB, NOTA, and DOTA), and radiolabeling reactions were performed. Western blot was used to determine the NTSR expression in human lung cancer cell lines (H1299). The antagonists’ in vitro and in vivo stability and binding affinity to lung cancer cells were also assessed. Finally, small animal PET/CT imaging was used to evaluate the agents’ biodistribution properties.

NTSR1 was confirmed to have high expression in H1299 cells by western blot. The antagonist CB-2PA-NT showed good binding affinity toward H1299 cells, and small mammal imaging confirmed its prominent tumor uptake, high tumor-to-background contrast and long tumor retention. After comparison with the other NTSR1 antagonists, CB-2PA-NT was identified as the leading agent for further evaluation.

“The success of this theranostic approach has the potential to provide an accurate imaging-based method to efficiently detect NTSR1 expression in multiple types of cancer for diagnosis, patient screening, and treatment monitoring, as well as a radionuclide-based agent for therapy. This will ultimately lead to more personalized medicine for cancer patients,” noted Ma.
To further explore the theranostic potential of this agent for patient management, University of North Carolina researchers have collaborated with the University of Wisconsin, and first-in-human imaging with CB-2PA-NT is expected to begin in the near future after regulatory approval.

For more information: www.snmmi.org

Find more SNMMI23 conference coverage here

 


Related Content

News | Radiation Dose Management

April 25, 2024 — BIOTRONIK, a leading global medical technology company specializing in innovative cardiovascular and ...

Time April 25, 2024
arrow
News | Cardiac Imaging

April 23, 2024 — CDL Nuclear Technologies, a pioneer in advanced diagnostic solutions, is proud to announce the launch ...

Time April 23, 2024
arrow
News | Radiation Therapy

April 18, 2024 — Accuray Incorporated announced that as part of its commitment to advancing patient care the company has ...

Time April 18, 2024
arrow
News | FDA

April 18, 2024 — Lumicell, Inc., a privately held company focused on developing innovative fluorescence-guided imaging ...

Time April 18, 2024
arrow
News | Lung Imaging

April 17, 2024 — A Medicare policy requiring primary care providers (PCPs) to share in the decision-making with patients ...

Time April 17, 2024
arrow
News | Mammography

April 12, 2024 — Bayer and Hologic, Inc. announced a first-of-its-kind collaboration to deliver a coordinated solution ...

Time April 12, 2024
arrow
News | Mammography

April 12, 2024 — GE HealthCare, a leader in breast health technology and diagnostics, will feature its latest breast ...

Time April 12, 2024
arrow
News | Radiation Therapy

April 12, 2024 — RTsafe, a leading provider of quality assurance products and services in stereotactic radiosurgery, and ...

Time April 12, 2024
arrow
Feature | Radiation Oncology | By Melinda Taschetta-Millane

In a new 3-part video series on advancements in diagnostic radiology with Robert L. Bard, MD, PC, DABR, FASLMS ...

Time April 10, 2024
arrow
News | Artificial Intelligence

April 9, 2024 —PreciseDx, a leading innovator in oncology diagnostics leveraging Artificial Intelligence (AI) for ...

Time April 09, 2024
arrow
Subscribe Now