News | Digital Pathology | January 10, 2019

AI Approach Outperformed Human Experts in Identifying Cervical Precancer

Artificial intelligence algorithm could revolutionize cervical cancer screening, especially in low-resource settings

AI Approach Outperformed Human Experts in Identifying Cervical Precancer

January 10, 2019 — A research team led by investigators from the National Institutes of Health and Global Good has developed a computer algorithm that can analyze digital images of a woman’s cervix and accurately identify precancerous changes that require medical attention. This artificial intelligence (AI) approach, called automated visual evaluation, has the potential to revolutionize cervical cancer screening, particularly in low-resource settings.

To develop the method, researchers used comprehensive datasets to "train" a deep, or machine, learning algorithm to recognize patterns in complex visual inputs, such as medical images. The approach was created collaboratively by investigators at the National Cancer Institute (NCI) and Global Good, a fund at Intellectual Ventures, and the findings were confirmed independently by experts at the National Library of Medicine (NLM). The results appeared in the Journal of the National Cancer Institute on Jan. 10, 2019.1 NCI and NLM are parts of NIH.

"Our findings show that a deep learning algorithm can use images collected during routine cervical cancer screening to identify precancerous changes that, if left untreated, may develop into cancer," said Mark Schiffman, M.D., MPH, of NCI’s Division of Cancer Epidemiology and Genetics, and senior author of the study. "In fact, the computer analysis of the images was better at identifying precancer than a human expert reviewer of Pap tests under the microscope (cytology)."

The new method has the potential to be of particular value in low-resource settings. Healthcare workers in such settings currently use a screening method called visual inspection with acetic acid (VIA). In this approach, a health worker applies dilute acetic acid to the cervix and inspects the cervix with the naked eye, looking for "aceto whitening," which indicates possible disease. Because of its convenience and low cost, VIA is widely used where more advanced screening methods are not available. However, it is known to be inaccurate and needs improvement.

Automated visual evaluation is similarly easy to perform. Health workers can use a cell phone or similar camera device for cervical screening and treatment during a single visit. In addition, this approach can be performed with minimal training, making it ideal for countries with limited healthcare resources, where cervical cancer is a leading cause of illness and death among women.

To create the algorithm, the research team used more than 60,000 cervical images from an NCI archive of photos collected during a cervical cancer screening study that was carried out in Costa Rica in the 1990s. More than 9,400 women participated in that population study, with follow-up that lasted up to 18 years. Because of the prospective nature of the study, the researchers gained nearly complete information on which cervical changes became precancers and which did not. The photos were digitized and then used to train a deep learning algorithm so that it could distinguish cervical conditions requiring treatment from those not requiring treatment.

"When this algorithm is combined with advances in HPV vaccination, emerging HPV detection technologies, and improvements in treatment, it is conceivable that cervical cancer could be brought under control, even in low-resource settings," said Maurizio Vecchione, executive vice president of Global Good.

The researchers plan to further train the algorithm on a sample of representative images of cervical precancers and normal cervical tissue from women in communities around the world, using a variety of cameras and other imaging options. This step is necessary because of subtle variations in the appearance of the cervix among women in different geographic regions. The ultimate goal of the project is to create the best possible algorithm for common, open use.

For more information: www.academic.oup.com/jnci

Reference

1. Hu L., Bell D., Antani S., et al. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. Journal of the National Cancer Institute, Jan. 10, 2019. https://doi.org/10.1093/jnci/djy225

Related Content

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief.

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief. Find more images from the COVID-19 pandemic.

 

Feature | Coronavirus (COVID-19) | April 08, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
A recent study earlier this year in the journal Nature, which included researchers from Google Health London, demonstrated that artificial intelligence (AI) technology outperformed radiologists in diagnosing breast cancer on mammograms
Feature | Breast Imaging | April 06, 2020 | By Samir Parikh
A recent study earlier this year in the journal Nature,
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 The Chinese start-up company Infervision launches its AI-based solution InferRead CT Lung Covid-19 also in Europe
News | Artificial Intelligence | March 31, 2020
March 31, 2020 — Lung infections generated by the coronavirus can be detected in...