News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor

Iodine-131 labeled antibodies can bind with SARS-CoV-2 virus to allow for treatment and imaging of viral load

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 


July 22, 2020 — One of the first studies has been published that looks at the use of radiation therapy to help treat COVID-19 (SARS-CoV-2) patients in the article "Oncology-inspired treatment options for COVID-19" published in the Journal of Nuclear Medicine July 17.[1] 

Researchers from Memorial Sloan Kettering Cancer Center, New York, radiolabled the CR3022 human antibody with Iodine-131 (I-131) as a targeted agent, since this antibody binds to the SARS-CoV-2 virus.

"Our results confirm the potential of CR3022 as a molecularly targeted probe for SARS-CoV-2. A labeled version of CR3022 could potentially be used for Auger radiotherapy or non-invasive imaging," the researchers concluded. 

Researchers said they labeled the antibody with Iodine-131 using the Iodogen-method and purified, yielding 131I-CR3022. Using a magnetic bead assay and a recombinant SARS-CoV-2 spike protein fragment, they tested the binding of 131I-CR3022 in the presence and absence of CR3022. The result was they conjugated the antibody CR3022 with a purity more than 98 percent and a molar activity of more than 7.9 mCi/mg. They confirmed the binding of 131I-CR3022 is selective, and is significantly reduced in the presence of unlabeled antibody (3.14 ± 0.14 specific uptake and 0.10 ± 0.01 specific uptake, respectively; P < 0.0001). 

This is not the first time radiotherapy has been considered for treating viruses. I-125 was explored as an Auger-based radiotherapeutic for a genetically engineered measles virus. The virus, which expressed the sodium iodide symporter in infected cells, was sensitive to I-125 in vitro, where virus replication could be stopped. However, the results did not translate to an in vivo model, suggesting sub-optimal pharmacokinetics of I-125.[2] 

Researchers said a selective, molecularly targeted vector such as the monoclonal antibody (mAb) CR3022 could serve as a delivery agent for I-125. CR3022 binds to the SARS-CoV-2 receptor binding domain (RBD) with a KD of 6.3 nM. The antibody is cross-reactive and conserved across several coronaviruses, making it ideal for targeting SARS-CoV-2, but potentially also related diseases.[3,4]

Another iodine isotope, I-131, is used as a standard-of-care treatment for certain types of thyroid cancers and has widespread use in scintigraphies and whole body SPECT imaging, the authors wrote. They said it made sense that radiolabeled CR3022 could be valuable for imaging, potentially serving as a direct, spatially resolved, contemporaneous and non-invasive readout of viral load within a patient. 

From a drug-development perspective, a direct readout of SARS-CoV-2 viral load could represent a quick, upstream indicator of therapy success. This could be particularly interesting as a tool for clinical research, and similar approaches have been used to accelerate oncologic drug development pipelines in the past.[5]

Read the entire open-access article.

 

CR3022 Antibody Could be COVID-19 Achilles Heel

National Institutes of Health Director Francis Collins, M.D., Ph.D., wrote a blog in April on the CR3022 human antibody might hold the key to developing effective therapy against COVID-19.[6] He said researchers had shown that CR3022 cross-reacts with the novel coronavirus, although the antibody does not bind tightly enough to neutralize and stop it from infecting cells. Some NIH-sponsored research is now looking at how precisely the antibodies attach to the virus to see if this can be leveraged by vaccine designers.

Collins said this was the subject of a recent paper in the journal Science, from the NIH-funded lab of Ian Wilson, The Scripps Research Institute, La Jolla, Calif., along with colleagues at The University of Hong Kong.[4] The findings suggest that a successful vaccine may be one that elicits antibodies that targets this same spot, but binds more tightly, thereby protecting human cells against the virus that causes COVID-19. 

 

References:

1. Nagavarakishore Pillarsetty, Lukas M. Carter, Jason S. Lewis, Thomas Reiner. Oncology-inspired treatment options for COVID-19. Journal of Nuclear Medicine, published on July 17, 2020 as doi:10.2967/jnumed.120.249748.

2. Dingli D, Peng K-W, Harvey ME, et al. Interaction of measles virus vectors with Auger electron emitting radioisotopes. Biochem Biophys Res Commun. 2005;337:22-29.

3. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9:382-
385.

4. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020 May 8;368(6491):630-633. doi: 10.1126/science.abb7269. Epub 2020 Apr 3. 

5. Wang Y, Ayres KL, Goldman DA, et al. 18F-fluoroestradiol PET/CT measurement of estrogen receptor suppression during a phase I trial of the novel estrogen receptor-targeted therapeutic GDC-0810: using an imaging biomarker to guide drug dosage in subsequent trials. Clin Cancer Res. 2017;23:3053-3060. 

6.  Francis Collins. Antibody Points to Possible Weak Spot on Novel Coronavirus. Published online April 14, 2020. NIH. https://directorsblog.nih.gov/tag/cr3022-antibody/. Accessed July 22, 2020.

 

 


Related Content

News | ASTRO

May 17, 2024 — Registration opens today for the American Society for Radiation Oncology's (ASTRO) 66th Annual Meeting ...

Time May 17, 2024
arrow
News | Radiation Therapy

May 16, 2024 — Today marks a significant milestone in cancer care with the introduction of bipartisan federal ...

Time May 16, 2024
arrow
News | FDA

May 14, 2024 — Indica Labs, the leading provider of digital pathology solutions, announced today that it received FDA ...

Time May 14, 2024
arrow
News | Radiology Business

May 14, 2024 — University Hospitals (UH) and Siemens Healthineers announce a 10-year strategic alliance that builds on ...

Time May 14, 2024
arrow
News | Artificial Intelligence

May 14, 2024 — Elekta announced the launch of its latest linear accelerator (linac), Evo*, a CT-Linac with new high ...

Time May 14, 2024
arrow
News | Radiation Oncology

May 10, 2024 — Mariana Oncology, a fully integrated biotechnology company pioneering a new era of radiopharmaceutical ...

Time May 10, 2024
arrow
News | Radiation Oncology

May 10, 2024 — Insurance expansions under the Affordable Care Act (ACA) were linked with an increase in patients ...

Time May 10, 2024
arrow
News | Radiopharmaceuticals and Tracers

May 8, 2024 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and commercialization of ...

Time May 08, 2024
arrow
News | Treatment Planning

May 6, 2024 — Elekta announced the acquisition of Philips Healthcare’s Pinnacle Treatment Planning System (TPS) patent ...

Time May 06, 2024
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

One on One interviews with radiology trailblazers and historic FDA clearances made the top-read list for April. Take a ...

Time May 03, 2024
arrow
Subscribe Now