News | Proton Therapy | May 23, 2019

Proton Therapy Lowers Risk of Side Effects Compared to Conventional Radiation

In largest study of its kind, Penn researchers compare overall adverse events of proton and photon therapies

Proton Therapy Lowers Risk of Side Effects Compared to Conventional Radiation

May 23, 2019 — Cancer patients getting proton therapy instead of traditional photon radiation are at a significantly lower risk of experiencing side-effects from their radiation therapy, while cure rates are almost identical between the two groups. Researchers in the Perelman School of Medicine at the University of Pennsylvania conducted the largest review of its kind to evaluate whether or not patients undergoing radiation therapy at the same time as chemotherapy experienced serious adverse events within 90 days. They will present their findings at the 2019 American Society of Clinical Oncology (ASCO) Annual Meeting, May 31-June 4 in Chicago (Abstract #6521).

"We looked at grade-three side effects — including pain or difficulty swallowing, difficulty breathing, nausea or diarrhea, among others — often severe enough for patients to be hospitalized," said the study's lead author Brian Baumann, M.D., an adjunct assistant professor of radiation oncology in the Perelman School of Medicine at the University of Pennsylvania and an assistant professor of radiation oncology at Washington University School of Medicine in St. Louis. "Our clinical experience is that concurrent chemoradiation therapy patients treated with protons, rather than photons, tend to have fewer side effects. While there is some literature supporting that finding for several disease sites, we did not expect the magnitude of the benefit to be this large."

The study's senior author is James Metz, M.D., chair of radiation oncology, leader of the Roberts Proton Therapy Center at Penn, and a member of Penn's Abramson Cancer Center.

Proton therapy has a few key differences from traditional photon radiation. Photon radiation typically uses multiple X-ray beams to attack a tumor target but unavoidably deposits radiation in the normal tissues beyond the target, potentially damaging those tissues as the beam exits the body. Proton therapy is a U.S. Food and Drug Administration (FDA)-approved treatment that is an alternative radiation treatment. It directs positively charged protons at the tumor target, where they deposit the bulk of the radiation dose, with minimal residual radiation delivered beyond the target, potentially reducing side effects and damage to surrounding tissue.

For this study, researchers evaluated data on 1,483 cancer patients, 391 of whom received proton therapy and 1,092 who underwent photon treatment. All patients had non-metastatic cancer and were undergoing chemotherapy and radiation intended to be curative. Patients with brain cancer, head and neck cancer, lung cancer, gastrointestinal cancer and gynecologic cancer treated with concurrent chemoradiation were included. The primary outcome was whether or not patients experienced radiation side effects that were grade-three or higher within 90 days of treatment.

Data showed 11.5 percent (45) of proton patients experienced a grade three or higher side effect. In the photon group, 27.6 percent (301) experienced a grade three or higher side-effect. A weighted analysis of both patient groups, which controlled for other factors that may have led to differences between the patient groups, found that the relative risk of a severe toxicity was two-thirds lower for proton patients compared to photon patients.

Importantly, overall survival and disease-free survival were similar between the two groups, suggesting that the reduction in toxicity seen with proton therapy did not come at the cost effectiveness. While researchers say more study is needed, they point out that this study is the best information we have so far as randomized controlled trials continue to prove difficult to complete.

"There are several trials underway, but they are all dealing with a variety of barriers, so it will be years before we have that data. That's why the information we do have is so critical, and our findings here point to a real benefit for our patients," Metz said.

For more information: www.asco.org

Related Proton Therapy Content

VIDEO: The Role of the Physicist in Proton Therapy

VIDEO: Economics of Proton Therapy

VIDEO: Proton Therapy Treatment at Northwestern Medicine

Related Content

Radiation After Immunotherapy Improves Progression-free Survival for Some Metastatic Lung Cancer Patients
News | Lung Cancer | September 18, 2019
Adding precisely aimed, escalated doses of radiation after patients no longer respond to immunotherapy reinvigorates...
IBA Gathers Experts on Flash Irradiation During ASTRO
News | Proton Therapy | September 17, 2019
IBA (Ion Beam Applications SA, held its third Victoria Consortium Meeting focusing on Flash irradiation at the 2019...
Noninvasive Radioablation Offers Long-term Benefits to High-risk Heart Arrhythmia Patients
News | Radiation Therapy | September 17, 2019
September 17, 2019 — Treating high-risk heart patients with a single, high dose of...
Sun Nuclear Presents Portfolio of Independent Radiotherapy QA Solutions at ASTRO 2019

The PlanCheck module now part of SunCheck, automates plan quality checks, validates treatment plans against requirements, and automatically assesses plan performance versus intent.

News | Quality Assurance (QA) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) Annual Meeting, running Sept. 15-18 in Chicago, Sun Nuclear...
Varian Unveils Ethos Solution for Adaptive Radiation Therapy
News | Image Guided Radiation Therapy (IGRT) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, being held Sept. 15-18 in Chicago, Varian...
Long-term Hormone Therapy Increases Mortality Risk for Low-PSA Men After Prostate Surgery
News | Prostate Cancer | September 16, 2019
Secondary analysis of a recent clinical trial that changed the standard of care for men with recurring prostate cancer...
The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning

The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning. Image courtesy of Siemens Healthineers.

News | Computed Tomography (CT) | September 15, 2019
Siemens Healthineers debuted two computed tomography (CT) systems dedicated to radiation therapy (RT) planning at the...
Isoray to Spotlight Cesium-131 Advances at ASTRO Annual Meeting
News | Brachytherapy Systems | September 13, 2019
Isoray Inc. announced it will spotlight the growing cancer treatment applications of Cesium-131 brachytherapy at the...
Akesis Galaxy SRS System Receives FDA 510(k) Clearance
Technology | Radiation Therapy | September 13, 2019
The Akesis Galaxy, a gamma stereotactic radiosurgery system (SRS) with continuous 360-degree rotational technology, has...
Philips Showcases Integrated Radiation Oncology Portfolio at ASTRO 2019
News | Radiation Oncology | September 13, 2019
Philips will showcase its integrated radiation oncology portfolio at the American Society of Radiation Oncology (ASTRO...