News | Medical 3-D Printing | December 11, 2018

GE Healthcare Partners With Department of Veterans Affairs to Accelerate 3-D Printing

VA Puget Sound Health Care System and GE Healthcare are working to reduce the time it takes for radiologists to create 3-D-printed models and prosthetics from hours to minutes

GE Healthcare Partners With Department of Veterans Affairs to Accelerate 3-D Printing

December 11, 2018 — GE Healthcare and VA Puget Sound Health Care System, Washington, recently announced a partnership to accelerate the use of medical 3-D printing in healthcare. As part of their research agreement, GE Healthcare will provide software and workstations, and the VA will provide input on its use of the technology. Prior to this agreement, the VA has used 3-D software that is not designed for medical use. Now, the VA will use GE software designed specifically for the medical field – which is expected to reduce the time it takes to create 3-D models from hours to minutes.

VA Puget Sound provides comprehensive care to more than 110,000 veterans across its nine facilities in the Pacific Northwest. Building on its 3D printing network, VA Puget Sound and the Veterans Health Administration Innovators Network will integrate GE Healthcare’s advanced visualization AW VolumeShare workstations with 3-D printing software across its facilities in Seattle, San Francisco, Minneapolis, Cleveland and Salt Lake City. VA radiologists specializing in cardiology, oncology, orthopedics and other areas will use this technology and software to develop new 3-D imaging approaches and techniques to deliver improved precision healthcare for U.S. veterans.

“The Veterans Health Administration has been on the forefront of bringing 3-D printing to the bedside, and we are thrilled to join forces with GE Healthcare to enhance and accelerate its adoption,” said Beth Ripley, M.D., Ph.D., VA Puget Sound radiologist, VA innovation specialist and VHA 3D Printing Advisory Committee chair. “For most radiologists, 3-D images are limited to reconstructions on a computer screen. By harnessing the power of 3-D printing with a rich data set, we are able to pull images out of the screen and into our hands, allowing us to interact with the data in a deeper way to fuel innovative, personalized care based on the unique needs of each of our patients.”

The use of 3-D medical printing in healthcare is still very much in its infancy, and software designed exclusively for the medical community is limited. Software designed to allow manual preparation of image data into 3-D printable files can be labor-intensive, requiring hours of work. Using GE Healthcare’s advanced visualization tool, specifically designed for the medical community, VA radiologists will be able to produce models of normal and pathological anatomy using automation techniques that will speed up the pre-3-D printing preparation work and the diagnostic process. This is expected to reduce the time it takes to create 3-D models from hours to minutes.

Three-dimensional printing is primarily used to manufacture orthopedic implants and guide surgical cutting, and peer-reviewed research on potential impact in patient care has expanded exponentially. Recent industry and regulatory advancements such as the establishment of clinical guidelines, 3-D printing reimbursement tracking codes, and the integration of technology and software are all expected to support the widespread adoption of point-of-care 3-D printing in hospitals.

For more information: www.gehealthcare.com

Related Content

Philips Signs Agreement to Create Taiwan's First Fully Digitalized Pathology Department
News | Digital Pathology | August 23, 2019
Philips announced that Taipei Veterans General Hospital (TPVGH) will utilize the Philips IntelliSite Pathology Solution...
Glassbeam Introduces AI-powered Rules and Alerts Engine for Clinsights
News | Analytics Software | August 23, 2019
Glassbeam Inc. revealed several technology enhancements in its Rules & Alerts engine that make it dramatically...
Smoldering Spots in the Brain May Signal Severe MS

NIH researchers found that dark rimmed spots representing ongoing, “smoldering” inflammation, may be a hallmark of more disabling forms of multiple sclerosis. Image courtesy of Reich lab, NIH/NINDS.

News | Neuro Imaging | August 22, 2019
Aided by a high-powered brain scanner and a 3-D printer, National Institutes of Health (NIH) researchers peered inside...
Sectra Signs Enterprise Imaging Contract With Vanderbilt Health
News | Enterprise Imaging | August 21, 2019
Sectra will install its enterprise imaging picture archiving and communication system (PACS) and vendor neutral archive...
Jackson Memorial Hospital Holds Ribbon-cutting for New Cardiac Catheterization Labs
News | Angiography | August 21, 2019
Jackson Memorial Hospital in Miami celebrated the opening of two newly renovated cardiac catheterization suites during...
Some Pregnant Women Are Exposed to Gadolinium in Early Pregnancy
News | Women's Health | August 20, 2019
A small but concerning number of women are exposed to a commonly used magnetic resonance imaging (MRI) contrast agent...
Lunit Receives Korea MFDS Approval for Lunit Insight MMG
News | Artificial Intelligence | August 19, 2019
Lunit has announced Korea Ministry of Food and Drug Safety (MFDS) approval of its artificial intelligence (AI) solution...
Lake Medical Imaging Selects Infinitt for Multi-site RIS/PACS
News | PACS | August 09, 2019
Infinitt North America will be implementing Infinitt RIS (radiology information system)/PACS (picture archiving and...
Shimadzu Medical Systems Receives FDA 510(k) for FluoroSpeed X1 RF System
Technology | Radiographic Fluoroscopy (RF) | August 09, 2019
Shimadzu Medical Systems USA, a subsidiary of Shimadzu Corp., announced they have received U.S. Food and Drug...
RSNA and ACR to Collaborate on Landmark Medical 3D Printing Registry
News | Medical 3-D Printing | August 08, 2019
The Radiological Society of North America (RSNA) and the American College of Radiology (ACR) will launch a new medical...