News | Artificial Intelligence | November 30, 2019

Fujifilm Showcases Artificial Intelligence Initiative And Advances at RSNA 2019

REiLI AI platform auto segmentation.

December 1, 2019 — Fujifilm Medical Systems U.S.A. is showcasing REiLI, the company's global medical imaging and informatics artificial intelligence (AI) technology initiative at the 2019 Radiological Society of North America's (RSNA) annual meeting.

"At RSNA 2019, we look forward to sharing the AI insights and advances we've made by working closely with clinical and research partners for several years," said Takuya Shimomura, chief technology officer and executive director, Fujifilm. "Ultimately, the long-term goal of our AI initiative is to help providers make better decisions that improve patient lives."

Under the REiLI brand, Fujifilm is developing AI technologies that strongly support diagnostic imaging workflow, leveraging the combination of its deep learning innovations and distinct image processing heritage. Applications currently in development include, but are not limited to: Region Recognition, an AI technology that helps to accurately recognize and consistently extract organ regions, regardless of deviations in shape, presence or absence of disease, and imaging conditions; Computer Aided Detection, an AI technology to reduce the time of image interpretation and support radiologists' clinical decision making; Workflow Support, using AI technology to realize optimal study prioritization, alert communications of AI findings, and report population automation. 

"Our latest Synapse 7x brings diagnostic radiology, mammography and cardiology together on the server-side, enabling immediate interaction with these modality imaging data sets through a single AI-enabled platform," said Bill Lacy, vice president, medical informatics, Fujifilm. "We're excited to debut this solution for our U.S. customers at RSNA 2019, showing our commitment to progressing AI technology to empower physicians to make more efficient and impactful care decisions."

RSNA attendees are encouraged to learn more about REiLI at Booth #4111 and participate in the following Fujifilm-hosted activities.

At booth #4111, attendees can visit Fujifilm's AI Lab. The lab will feature dedicated workstations demonstrating REiLI use cases within Synapse PACS. Attendees can witness first-hand the speed and depth of the integrated workflows achieved by unifying Fujifilm's REiLI technology with the company's server-side PACS system.  Featured in the AI lab will be Fujifilm developed algorithms, to include CT lung nodule, intracerebral hemorrhage, cerebral infarction MR and CT, spine label and bone temporal subtraction to name a few. In addition to the Fujifilm AI development, the AI lab will showcase its strengths by supporting a multitude of integration points in support of partner vendor and provider developed algorithms. This will include Riverain's lung nodule, MaxQ's stroke, Lunit's Chest and 2-D Mammography, LPixel's MR Aneurysm, Koios' US breast, Aidoc's pulmonary embolism and Gleamer's bone fracture.

For more inform rsna.fujimed.com
 

Related Content

CoronaCare is designed to help healthcare providers track COVID-19 (coronavirus) related symptoms of potentially infected patients. The platform enables communication with patients outside of facility walls and the ability to request the return of high-risk patients for more in-depth care. #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Coronavirus (COVID-19) | March 27, 2020
March 27, 2020 — PaxeraHealth has spent years building and be
AI vendor Infervision's InferRead CT Pneumonia software uses artificial intelligence-assisted diagnosis to improve the overall efficiency of the radiology department. It is being developed in China as a high sensitivity detection aid for novel coronavirus pneumonia (COVID-19). #COVID19 #coronavirus #SARScov2

AI vendor Infervision's InferRead CT Pneumonia software uses artificial intelligence-assisted diagnosis to improve the overall efficiency of the radiology department. It is being developed in China as a high sensitivity detection aid for novel coronavirus pneumonia (COVID-19).

Feature | Coronavirus (COVID-19) | March 27, 2020 | Jilian Liu, M.D., HIMSS Greater China
An older couple walked into the Hubei Provincial Hospital of Integrated Chinese and Western Medicine near their neigh
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Typical CT imaging features for COVID-19. Unenhanced, thin-section axial images of the lungs in a 52-year-old man with a positive RT-PCR (A-D) show bilateral, multifocal rounded (asterisks) and peripheral GGO (arrows) with superimposed interlobular septal thickening and visible intralobular lines (“crazy-paving”). Routine screening CT for diagnosis or exclusion of COVID-19 is currently not recommended by most professional organizations or the US Centers for Disease Control and Prevention. Image courtesy of RSNA

News | Coronavirus (COVID-19) | March 26, 2020
March 26, 2020 — The Radiological Society of North America (RSNA
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Artificial Intelligence | March 24, 2020
March 24, 2020 — Qure.ai, a leading healthcare...
Instant triage capability could potentially speed up diagnosis of COVID-19 individuals and ensure resources allocated properly.
News | Artificial Intelligence | March 23, 2020
March 23, 2020 — behold.ai announced that its artificial intellige
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Representative examples of the attention heatmaps generated using Grad-CAM method for (a) COVID-19, (b) CAP, and (c) Non-Pneumonia. The heatmaps are standard Jet colormap and overlapped on the original image, the red color highlights the activation region associated with the predicted class. COVID-19 = coronavirus disease 2019, CAP = community acquired pneumonia. Image courtesy of the journal Radiology

News | Coronavirus (COVID-19) | March 20, 2020
March 20, 2020 — An arti...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Series CT scans in 35-year-old woman with COVID-19 pneumonia. (a) Scan obtained on illness days 1 showed multiple pure ground-glass opacity (GGO) mainly in right lower lobe. (b) Scan obtained on illness days 5 showed increased extent of GGO and early consolidation. (c) Scan obtained on illness days 11 showed multiple consolidation with almost the same extent. (d) Scan obtained on illness days 15 showed a mixed pattern with a slightly smaller extent, and the perilobular consolidation might suggest the presence of organizing pneumonia. The patient was discharged on illness days 17. Image courtesy of the journal Radiology

News | Coronavirus (COVID-19) | March 20, 2020
March 20, 2020 — In a new study pub