News | Cardiovascular Ultrasound | June 27, 2018

EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation

Study results show artificial intelligence-based software has less variability in evaluating left ventricular EF than the reported average variability of cardiologists

EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation

June 27, 2018 – A recent study conducted with the Minneapolis Heart Institute found that Bay Labs’ EchoMD AutoEF deep learning software has less variability in evaluating left ventricular ejection fraction (EF) than the average variability of cardiologists reported in literature. Results of the study were presented at the 2018 American Society of Echocardiography (ASE) Annual Scientific Sessions, June 22-26 in Nashville.

Literature shows that the average variability of cardiologist readers using the Simpson’s biplane method in estimating EF is 9.2 percent. The observed variability of EchoMD AutoEF was superior at 8.29 percent (p = 0.002). The study also demonstrated that EchoMD AutoEF is an accurate and fully automated method of calculating EF from complete echocardiographic patient studies without user intervention. In addition to normal patients, it performed well on obese patients, and on patients with a range of normal and abnormal EF.

“Historically there have been challenges with variability and reproducibility in reporting of the ejection fraction, especially when the EF is not normal; our study showed that the EchoMD AutoEF algorithms can aid interpretation enormously and have less variability than cardiologists reported in literature,” said Richard Bae, M.D., FACC, director of the Echocardiography Laboratory at the Minneapolis Heart Institute and co-author of the study. “By supporting fast, efficient and accurate AI [artificial intelligence]-assisted echocardiogram analysis, the algorithms can allow physicians to focus on putting results into context for the patient — guiding prognosis and course of management.”

The study included 405 echocardiographic patient studies from Minneapolis Heart Institute representing a wide range of body mass index, EF values and of ultrasound systems. For each patient study, the Bay Labs’ software automatically selected optimal apical four-chamber and apical two-chamber digital video clips and used them to perform an EF calculation. These calculations were compared to the standard Simpson’s biplane method.

For more information: www.baylabs.io

Related Content

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI.

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI. Graphic courtesy of the Radiological Society of North America.

News | Artificial Intelligence | December 11, 2019
December 11, 2019 — Deep learning, a type of arti...
EMR patient portal on a smartphone
News | Electronic Medical Records (EMR) | December 11, 2019
December 11, 2019 — Despite the numerous benefits associated with patients accessing their medical records, a study b
Damage from concussion alters the way information is transmitted between the two halves of the brain, according to a new study presented today at the annual meeting of the Radiological Society of North America (RSNA).

Image courtesy of RSNA

News | Clinical Trials | December 10, 2019
December 10, 2019 — Damage from...
After receiving acupuncture treatment three days a week during the course of radiation treatment, head and neck cancer patients experienced less dry mouth, according to study results from researchers at The University of Texas MD Anderson Cancer Center

Image by Rudolf Langer from Pixabay 

News | Clinical Trials | December 06, 2019
December 6, 2019 — After receiving acupuncture treatment three days a week during the course of...
Timothy Whelan is a professor of oncology at McMaster University and a radiation oncologist at the Juravinski Cancer Centre of Hamilton Health Sciences. He holds a Canada Research Chair in Breast Cancer Research. Photo courtesy McMaster University

Timothy Whelan is a professor of oncology at McMaster University and a radiation oncologist at the Juravinski Cancer Centre of Hamilton Health Sciences. He holds a Canada Research Chair in Breast Cancer Research. Photo courtesy McMaster University. Photo courtesy of McMaster University

News | Breast Imaging | December 06, 2019
December 6, 2019 — A shorter course of higher-dose radiation treatment to part of the breast is showing promise in wo
MRI Exablate neuro helmet from INSIGHTEC

MRI Exablate neuro helmet from INSIGHTEC. Image courtesy of Ali Rezai, M.D., and RSNA.

News | Clinical Trials | December 03, 2019
December 3, 2019 — Focused ultrasound is a safe and effective way to target and open areas of the blood-brain barrier
#RSNA19 A sophisticated type of artificial intelligence (AI) can detect clinically meaningful chest X-ray findings as effectively as experienced radiologists, according to a study published in the journal Radiology.

Image courtesy of GE Healthcare

News | Artificial Intelligence | December 03, 2019
December 3, 2019 — A sophisticated type of...