Technology | Treatment Planning | December 20, 2016

Dedicated Radiation Therapy CT System Receives FDA Clearance

CT scanner delivers RT images that enable precise contouring and personalized dose calculation while eliminating unnecessary workflow steps

Somatom Confidence RT Pro, RT, radiation therapy, treatment planning

December 20, 2016 — The U.S. Food and Drug Administration (FDA) has granted 510(k) clearance for Siemens’ Somatom Confidence Radiation Therapy (RT) Pro computed tomography (CT) scanner with features dedicated to RT planning. Together with the new, advanced version of the company’s optional syngo.via RT Image Suite software, the Somatom Confidence RT Pro helps achieve personalized scans while simultaneously enabling facilities to reach higher levels of standardization and efficiency. 

The new syngo.via RT Image Suite software complements Confidence RT Pro with integrated image assessment, contouring, and patient marking features
 
The new Somatom Confidence RT Pro is designed to deliver new RT images that challenge current practices in RT treatment planning, which favor standardization over personalization. For example, the standard RT treatment plan of every patient – regardless of age, gender, disease state, or imaging system – is built on 120 kV CT images, which are not optimized for precise contouring but enable a highly controlled workflow.

Taking into account the trend toward more advanced treatment techniques where precision is critical to high-quality care, the Somatom Confidence RT Pro enables personalized scans by delivering images that are optimized for both contouring and dose calculation. No longer limited to the traditional 120 kV tube voltage, radiation oncology professionals can now, through the Somatom Confidence RT Pro and its new DirectDensity™¹ technology, provide personalized imaging for each RT patient.

The Somatom Confidence RT Pro features the DirectDensity[1] algorithm, which can be used to reconstruct images where values can be interpreted as showing relative electron density[2] at any given kV setting, enabling seamless use of those images for treatment planning. And thanks to iMAR metal artifact reduction, task-based automated kV settings with CARE kV, and an all-new detector that enhances image quality and dual energy performance, the Somatom Confidence RT Pro can generate personalized images for all RT patients – images intended to enable optimal precision along the entire RT chain, for both confident contouring and dose calculation.

Additionally, the new syngo.via RT Image Suite software from Siemens Healthineers complements the Somatom Confidence RT Pro by helping radiation oncology professionals increase efficiency with integrated image assessment, contouring, and patient marking features in one solution. Its flexible client-server based architecture enables easy adaptation to the needs of RT staff regardless of location – be it the CT console, the physician’s office, or the dosimetry lab. And developed with an eye toward scalability, syngo.via RT Image Suite can grow with the needs of the RT department, from straightforward simulation tools to complex, interdepartmental, multi-modality workflow and task support, Siemens said.

syngo.via RT Image Suite can help users open new clinical avenues, potentially enabling them to consume complex studies such as multi-parametric magnetic resonance (MR) images, dual energy and perfusion CT images, and 4-D positron emission tomography (PET)/CT images, among others.

For more information: www.siemens.com/healthineers
 

References:

1. DirectDensity reconstruction is designed for use in Radiation Therapy Planning (RTP) only. DirectDensity reconstruction is not intended to be used for diagnostic imaging.

2. As shown by measurements with a Gammex 467 Tissue Characterization Phantom comparing standard reconstruction (kernel D30) and DirectDensity reconstruction (kernel E30). HU value to relative electron density conversion for the standard reconstruction was based on a two-linear-equations approach with individual calibration for each tube voltage. For DirectDensity images, a single tube-voltage-independent linear conversion was used.

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Updated CT scoring criteria from AJR considers both lobe involvement and changes in CT findings to quantitatively and accurately evaluate the progression of COVID-19 pneumonia

CT scoring criteria were applied to images from sequential chest CT examinations. A, Initial chest CT image obtained 2 days after onset of symptoms shows small region of subpleural ground-glass opacities in right lower lobe, for CT score of 1. B, Chest CT image obtained on day 3 of treatment shows slightly enlarged region of subpleural ground-glass opacities with partial crazy-paving pattern and consolidation, for CT score of 3. C, Chest CT image obtained on day 5 of treatment shows partial resolution of consolidation, for CT score of 2. D, Chest CT image obtained on day 14 of treatment shows continued resolution of consolidation with minimal residual ground-glass opacities, for CT score of 1. Image courtesy of American Journal of Roentgenology (AJR)

News | Computed Tomography (CT) | April 02, 2020
April 2, 2020 — Updated computed t...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Company emphasizes faster, more advanced CTs, making imaging easier for COVID-19 patients
News | Computed Tomography (CT) | April 01, 2020
April 1, 2020 — United Imaging, a global leader in advanc