News | Analytics Software | October 25, 2016

Computer Program Beats Physicians at Brain Cancer Diagnoses

New research could speed identification of recurrent tumors, eliminate costly and risky brain biopsies

Case Western Reserve University study, machine learning, MRI, brain cancer diagnoses, radiomics

MRI scans of patients with radiation necrosis (above) and cancer recurrence (below) are shown in the left column. Close-ups in the center column show the regions are indistinguishable on routine scans. Radiomic descriptors unearth subtle differences showing radiation necrosis, in the upper right panel, has less heterogeneity, shown in blue, compared to cancer recurrence, in the lower right, which has a much higher degree of heterogeneity, shown in red. Credit: Pallavi Tiwari

October 25, 2016 — Computer programs have defeated humans in Jeopardy!, chess and Go. Now a program developed at Case Western Reserve University has outperformed physicians on a more serious matter.

The program was nearly twice as accurate as two neuroradiologists in determining whether abnormal tissue seen on magnetic resonance images (MRI) were dead brain cells caused by radiation, called radiation necrosis, or if brain cancer had returned.

The direct comparison is part of a feasibility study published in the American Journal of Neuroradiology.

“One of the biggest challenges with the evaluation of brain tumor treatment is distinguishing between the confounding effects of radiation and cancer recurrence,” said Pallavi Tiwari, assistant professor of biomedical engineering at Case Western Reserve and leader of the study. “On an MRI, they look very similar.”

But treatments for radiation necrosis and cancer recurrence are far different. Quick identification can help speed prognosis, therapy and improve patient outcomes, the researchers say.

With further confirmation of its accuracy, radiologists using their expertise and the program may eliminate unnecessary and costly biopsies, Tiwari said. Brain biopsies are currently the only definitive test but are highly invasive and risky, causing considerable morbidity and mortality.

To develop the program, the researchers employed machine learning algorithms in conjunction with radiomics, the term used for features extracted from images using computer algorithms. The engineers, scientists and physicians trained the computer to identify radiomic features that discriminate between brain cancer and radiation necrosis, using routine follow-up MRI scans from 43 patients. The images were all from University Hospitals Case Medical Center.

The team then developed algorithms to find the most discriminating radiomic features — in this case, textures that can’t be seen by simply eyeballing the images.

“What the algorithms see that the radiologists don’t are the subtle differences in quantitative measurements of tumor heterogeneity and breakdown in microarchitecture on MRI, which are higher for tumor recurrence,” said Tiwari, who was appointed to the Department of Biomedical Engineering by the Case Western Reserve School of Medicine.

More specifically, while the physicians use the intensity of pixels on MRI scans as a guide, the computer looks at the edges of each pixel, explained Anant Madabhushi, F. Alex Nason professor II of biomedical engineering at Case Western Reserve, and study co-author.

“If the edges all point to the same direction, the architecture is preserved,” said Madabhushi, who also directs the Center of Computational Imaging and Personalized Diagnostics at CWRU. “If they point in different directions, the architecture is disrupted — the entropy, or disorder, and heterogeneity are higher. “

In the direct comparison, two physicians and the computer program analyzed MRI scans from 15 patients from University of Texas Southwest Medical Center. One neuroradiologist diagnosed seven patients correctly, and the second physician correctly diagnosed eight patients. The computer program was correct on 12 of the 15.

Tiwari and Madabhushi do not expect the computer program would be used alone, but as a decision support to assist neuroradiologists in improving their confidence in identifying a suspicious lesion as radiation necrosis or cancer recurrence.

Next, the researchers are seeking to validate the algorithms’ accuracy using a much larger collection of images from across different sites.

For more information: www.ajnr.org

Related Content

Dicom Systems Receives U.S. Patent for Medical Data Integration Engine
News | Enterprise Imaging | October 22, 2019
Dicom Systems announced that the U.S. Patent and Trademark Office (USPTO) has issued U.S. Patent 10,437,877 B2 to...
Major Radiology Organizations Publish Ethics of AI in Radiology Statement
News | Artificial Intelligence | October 22, 2019
Experts in the use of artificial intelligence (AI) in radiology, from many of the world’s leading radiology, medical...
Greater Left Ventricular Mass Increases Risk of Heart Failure
News | Cardiac Imaging | October 21, 2019
Elevated left ventricular mass, known as left-ventricular hypertrophy, is a stronger predictor of coronary artery...
Laurel Bridge Software Celebrates 20th Anniversary
News | Enterprise Imaging | October 21, 2019
Laurel Bridge Software recently celebrated its 20th anniversary of helping healthcare providers and original equipment...
The Revolution Apex intelligent computed tomography (CT) scanner

The Revolution Apex intelligent computed tomography (CT) scanner. Image courtesy of GE Healthcare.

News | RSNA | October 18, 2019
At the 2019 annual meeting of the Radiological Society of North America (RSNA 2019), Dec. 1-6 in Chicago, GE Healthcare...
Selecting an AI Marketplace for Radiology: Key Considerations for Healthcare Providers
Feature | Artificial Intelligence | October 18, 2019 | Sanjay Parekh, Ph.D.
October 18, 2019 — As the nascent market for...
Surgical Institute of Reading Chooses RamSoft's PowerServer Lite PACS
News | PACS | October 18, 2019
Surgical Institute of Reading recently selected RamSoft’s PowerServer Lite PACS (picture archiving and communication...
While electronic medical record systems have helped consolidate most patient data into one location, medical imaging IT systems has proved to be more difficult to replicate by large EMR vendors. This has made room in the market for third-party radiology IT vendors that allow easy integration with the larger EMRs like Epic and Cerner. This image shows Agfa's enterprise imaging system, leveraging its ability to be accessed anywhere with internet connection and pull images from radiology and surgery.

While electronic medical record systems have helped consolidate most patient data into one location, medical imaging IT systems has proved to be more difficult to replicate by large EMR vendors. This has made room in the market for third-party radiology information system vendors that allow easy integration with the larger EMRs like Epic and Cerner. This image shows Agfa's enterprise imaging system, leveraging its ability to be accessed anywhere with an internet connection and able to pull in images from both radiology and surgery. 

Feature | Enterprise Imaging | October 17, 2019 | Steve Holloway
October 17, 2019 — The growing influence and uptake of electronic medical records (EMRs) in healthcare has driven deb
USF Health Expands Digisonics System With Vascular Reporting
News | Cardiac PACS | October 17, 2019
University of South Florida (USF) Health in Tampa, Fla., has enhanced their use of the Digisonics Cardiovascular...
Intelerad's nuage Patient Portal

Intelerad's nuage Patient Portal. Image courtesy of Intelerad.

News | Enterprise Imaging | October 17, 2019
Intelerad Medical Systems announced that OneWelbeck, a London operator of specialist facilities for minimally-invasive...