News | Artificial Intelligence | December 11, 2019

Artificial Intelligence Boosts MRI Detection of ADHD

This deep learning approach could also have applications for other neurological conditions, according to researchers

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI.

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI. Graphic courtesy of the Radiological Society of North America.

December 11, 2019 — Deep learning, a type of artificial intelligence, can boost the power of magnetic resonance imaging (MRI) in predicting attention deficit hyperactivity disorder (ADHD), according to a study published in Radiology: Artificial Intelligence. Researchers said the approach could also have applications for other neurological conditions.

The human brain is a complex set of networks. Advances in functional MRI, a type of imaging that measures brain activity by detecting changes in blood flow, have helped with the mapping of connections within and between brain networks. This comprehensive brain map is referred to as the connectome.

Increasingly, the connectome is regarded as key to understanding brain disorders like ADHD, a condition that makes it difficult for a person to pay attention and control restless behavior.

According to the National Survey of Children's Health, approximately 9.4 percent of U.S. children, ages 2 to 17 years (6.1 million) in 2016 have been diagnosed with ADHD. The disorder cannot yet be definitively diagnosed in an individual child with a single test or medical imaging exam. Instead, ADHD diagnosis is based on a series of symptoms and behavior-based tests.

Brain MRI has a potential role in diagnosis, as research suggests that ADHD results from some type of breakdown or disruption in the connectome. The connectome is constructed from spatial regions across the MR image known as parcellations. Brain parcellations can be defined based on anatomical criteria, functional criteria, or both. The brain can be studied at different scales based on different brain parcellations.

Prior studies have focused on the so-called single-scale approach, where the connectome is constructed based on only one parcellation. For the new study, researchers from the University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center took a more comprehensive view. They developed a multi-scale method, which used multiple connectome maps based on multiple parcellations.

To build the deep learning model, the researchers used data from the NeuroBureau ADHD-200 dataset. The model used the multi-scale brain connectome data from the project's 973 participants along with relevant personal characteristics, such as gender and IQ.

The multi-scale approach improved ADHD detection performance significantly over the use of a single-scale method.

"Our results emphasize the predictive power of the brain connectome," said study senior author Lili He, Ph.D., from the Cincinnati Children's Hospital Medical Center. "The constructed brain functional connectome that spans multiple scales provides supplementary information for the depicting of networks across the entire brain."

By improving diagnostic accuracy, deep-learning-aided MRI-based diagnosis could be critical in implementing early interventions for ADHD patients. Approximately 5 percent of American pre-school and school-aged children have been diagnosed with ADHD. These children and adolescents face a high risk of failing in academic study and building social relationships, which can result in financial hardship for families and create a tremendous burden on society.

The approach also has potential beyond ADHD, according to He.

"This model can be generalized to other neurological deficiencies," she said. "We already use it to predict cognitive deficiency in pre-term infants. We scan them soon after birth to predict neurodevelopmental outcomes at two years of age."

In the future, the researchers expect to see the deep learning model improve as it is exposed to larger neuroimaging datasets. They also hope to better understand the specific breakdowns or disruptions in the connectome identified by the model that are associated with ADHD.

For more information: www.RadiologyInfo.org

Related Content

Bariatric surgery and weight loss appear to reverse some of the negative effects of obesity on the respiratory system, according to a study published in the journal Radiology

Axial unenhanced inspiratory CT images of the lungs in 51-year-old woman (a) before and (b) 6 months after bariatric surgery with 31-kg weight loss (body mass index decrease, 36.1%). The mosaic attenuation seen before surgery resolved after surgery. Image courtesy of Radiological Society of North America (RSNA)

News | Computed Tomography (CT) | January 29, 2020
January 29, 2020 — Bariatric surgery and weight loss appear to reverse some of the negative effects of obesity on the
Imaging center leaders and radiologists identify benefits, challenges and areas of use associated with artificial intelligence usage in healthcare

Image by Gerd Altmann from Pixabay 

News | Artificial Intelligence | January 28, 2020
January 28, 2020 — Definitive Healthcare, a provider of da
Pulmonary imaging is important in the diagnosis of the acute lung injury associated with vaping, known as electronic cigarette or vaping product use-associated lung injury (EVALI), according to a special review article published in the journal Radiology

Images show electronic cigarette or vaping product use-associated lung injury in a 32-year-old man with history of vaping who presented with fevers and night sweats for 1 week. (a) Coronal maximum intensity projection image shows diffuse centrilobular nodularity. (b) Histologic sections of his transbronchial cryobiopsy showed distinctive micronodular pattern of airway-centered organizing pneumonia, corresponding to centrilobular nodularity seen at CT. Similar imaging and pathologic findings have been described in patients with smoke synthetic cannabinoids. Image courtesy of Radiological Society of North America (RSNA)

News | Lung Cancer | January 28, 2020
January 28, 2020 — Pulmonary imaging is important in the diagnosis of the acute lung injury associated with...
Sponsored Content | Videos | Mammography | January 24, 2020
Imaging Technology News Contributing Editor Greg Freiherr interviewed...
he U.S. Food and Drug Administration (FDA) has issued a final order to reclassify medical image analyzers applied to mammography breast cancer, ultrasound breast lesions, radiograph lung nodules and radiograph dental caries detection, postamendments class III devices (regulated under product code MYN), into class II (special controls), subject to premarket notification

Image courtesy of iCAD

News | Computer-Aided Detection Software | January 22, 2020
January 22, 2020 — The U.S.
Medical imaging technology company Oxipit announced partnership with Swiss medical distribution company Healthcare Konnect to bring ChestEye AI imaging suite to healthcare institutions in Nigeria
News | Artificial Intelligence | January 22, 2020
January 22, 2020 — Medical imaging technology company Oxipit ann
Hitachi Healthcare Americas announced that it will create a new dedicated research and development facility within its North American headquarters facility in Twinsburg, Ohio
News | Radiology Business | January 21, 2020
January 21, 2020 — Hitachi Healthcare Americas announced that it will create a new dedicated research and development
Sponsored Content | Videos | Enterprise Imaging | January 20, 2020
GE Healthcare's iCenter is a cloud-based management software that provides 24/7 visibility to customers' visual and o