Feature | May 05, 2015

Gadolinium May Remain in Brain After Contrast MRI

Series of three studies finds residual contrast years later, but long-term effects still unknown

gadolinium, brain, contrast MRI, Radiology, Kanal, brain, brain MRI with contrast

May 5, 2015 — New research, published in the journal Radiology, suggests some types of a popular contrast agent used in magnetic resonance imaging (MRI) exams may remain in the brain for years, but that the long-term effects are unknown.

“We now have clear evidence that the administration of various gadolinium-based contrast agents results in notably varied levels of accumulation of residual gadolinium in the brain,” said Emanuel Kanal, M.D., director of magnetic resonance services and professor of radiology and neuroradiology at the University of Pittsburgh Medical Center. “What we still don’t know is the clinical significance, if any, of this observation.”

Watch the VIDEO "MRI Gadolinium Contrast Retention in the Brain," an interview with Emanuel Kanal, M.D. at RSNA 2016. 

Gadolinium-based contrast agents have been used for diagnosis and treatment guidance in more than 100 million patients worldwide over the past 25 years. These agents enhance the quality of MR images by altering the magnetic properties of nearby water molecules in the body. By improving the visibility of specific organs, blood vessels or tissues, contrast agents help physicians diagnose and treat a wide variety of medical conditions.

On its own, gadolinium can be toxic. Therefore, when used in contrast agents, gadolinium is bonded with a molecule called a chelating agent, which controls the distribution of gadolinium within the body.

“Integral to the safety of gadolinium contrast agents is the persistence of the gadolinium-chelate bond for as long as the agent remains within the patient,” said Kanal, who, along with Michael F. Tweedle, Ph.D., Stefanie Spielman Professor of Cancer Imaging at The Ohio State University, co-authored an editorial on the topic published in the June issue of the journal Radiology.

Gadolinium contrast agents are generally considered safe. Until 2006, it was believed that most, if not all, gadolinium left the body shortly after the exam. However, in the last 10 years, studies have reported that prolonged, elevated levels of gadolinium in the body may cause a condition called nephrogenic systemic fibrosis in patients with severe kidney disease.

Now, three studies published online in Radiology raise new questions about residual gadolinium concentrations in the brains of patients with no history of kidney disease.

Researchers from Teikyo University School of Medicine in Tokyo, Japan, found that even in patients without severe renal dysfunction, gadolinium-based contrast agent administration causes gadolinium accumulation in the brain. Brain tissues from five autopsied patients who had undergone multiple gadolinium-based contrast MRI exams and five patients with no gadolinium history were examined. None of the patients had been diagnosed with severely compromised renal function or acute renal failure. Gadolinium in significant amounts was detected in all specimens from the contrast group.

These findings lend support to the results of a Mayo Clinic study published in March, which showed residual gadolinium deposits in the postmortem brains of 13 patients who had undergone at least four gadolinium-based contrast MRI exams.

Neither of these studies was able to identify whether the residual gadolinium was in free or chelated form.

A third study, from the University of Heidelberg Medical Center in Heidelberg, Germany, suggests that the molecular structure of the contrast agent may play a role in gadolinium retention. There are two structurally distinct categories of gadolinium-based contrast agents: linear and macrocyclic. In the macrocyclic structure, the gadolinium is bound more tightly to the chelating agent and, therefore, less likely to release free gadolinium into the body.

For the Heidelberg study, the researchers retrospectively looked at two groups of 50 patients who had undergone at least six MRI exams with the exclusive use of a linear or macrocyclic gadolinium-based contrast agent. They found an increase in MRI signal intensity in specific brain regions in the linear group, but not in the macrocyclic group, suggesting gadolinium retention only in the group that had received the linear type of contrast agent. Both the Japanese study and the Mayo Clinic study focused solely on linear gadolinium agents.

Based on these findings, Kanal emphasizes that physicians should only order contrast MRI when truly indicated, and take into consideration the unknown risks of residual gadolinium when determining the type and amount of contrast agent to administer.

“Gadolinium-based contrast agents are extremely valuable to patients worldwide and have been so for decades,” he said. “We cannot unnecessarily deprive our patients of crucial, even life-saving medical data from gadolinium contrast-enhanced MRI. Nor can we ignore these new findings and continue prescribing them as we have until now, without change.”

Read the article “MRIs During Pregnancy Are Safe, But Gadolinium Scans May Increase Risk to Fetus.”
 

Related Gadolinium Safety Concern Articles

ACR Manual on Contrast Media Addresses FDA Gadolinium Safety Concerns

Study Finds No Association Between Gadolinium Contrast and Nervous System Disorder

Even High Doses of Gadolinium-Based Contrast Agents Doesn't Cause NSF

 

For more information: www.radiologyinfo.org

Related Content

M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers

M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers. (c) University of Maryland Greenebaum Comprehensive Cancer Center

News | Prostate Cancer | March 05, 2020
March 5, 2020 — Using a combination of...
MR Solutions’ dry magnet MRI system for molecular imaging on display at EMIM 2020
News | Magnetic Resonance Imaging (MRI) | February 28, 2020
February 28, 2020 — MR Solutions will be displaying its la
An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
A cutting-edge magnet resonance imaging (MRI) technique to detect iron deposits in different brain regions can track declines in thinking, memory and movement in people with Parkinson's disease #Parkinsons #MRI

Summary steps of the processing pipeline for QSM reconstruction (phase pre-processing and map estimation) and whole brain/regional analysis. ANTs, advanced normalisation tools; MP-RAGE, magnetisation-prepared, 3D, rapid, gradient-echo; MSDI, multi-scale dipole inversion; QSM, quantitative susceptibility mapping; ROI, region of interest; SWI, susceptibility weighted imaging.

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — A cutting-edge...
Two magnetic resonance imaging (MRI) findings — joint capsule edema and thickness at the axillary recess, specifically — proved useful in predicting stiff shoulder in patients with rotator cuff tears, according to an ahead-of-print article in the May issue of the American Journal of Roentgenology (AJR)

A: Oblique coronal fat-suppressed T2-weighted MR image shows normal hypointense joint capsule at axillary recess (arrow). Note full-thickness tear of supraspinatus tendon (arrowheads) B: Oblique sagittal proton density MR image shows preserved subcoracoid fat triangle (asterisk). Image courtesy of the American Journal of Roentgenology (AJR)

News | Magnetic Resonance Imaging (MRI) | February 20, 2020
February 20, 2020 — Two ma...
Hyperfine Research, Inc. announced that it has received U.S. Food and Drug Administration (FDA) 510(k) clearance for the world’s first bedside Magnetic Resonance Imaging (MRI) system

Hyperfine's point-of-care MRI wheels directly to the patient’s bedside, plugs into a standard electrical wall outlet, and is controlled via a wireless tablet. Photo courtesy of Business Wire

News | Magnetic Resonance Imaging (MRI) | February 12, 2020
February 12, 2020 — Hyperfine Research, Inc. announced that i