News | April 24, 2008

Surgeons Able to Adjust Suture Tension During Rotator Cuff Surgery

April 25, 2008 - Smith & Nephew’s Endoscopy Division announced the launch of the FOOTPRINT PK Suture Anchor, a system used to attach rotator cuff tissue to bone in the shoulder.

The system is featured at AANA 2008.

The objective during rotator cuff repair is to return the soft tissue to its original anatomic attachment site. Unlike early single row suture anchor techniques, which employed single-point re-attachment, the “footprint repair” approach uses multiple anchors in two rows, often with suture bridges that provide greater tissue-to-bone attachment.

Early approaches to cuff repair included transosseous tunnel repairs, which are still done today in some medical practices. During this procedure, the surgeon drills bone tunnels through the humeral head and laces suture through them. The FOOTPRINT PK Suture Anchor delivers a Transosseous Equivalent (TOE) repair without the need for drilling transosseous bone tunnels. Its two-piece design allows for the shell of the anchor to be tapped into place. Then, independent of implantation, an inner plug is advanced, which secures the sutures running from the other anchor rows.

The anchor design enables the surgeon to adjust the tension of the suture bridges, so the final fixation is set exactly as the surgeon wishes. Unlike anchors where the tension is set before anchor implantation, the surgeon knows exactly how much tension is present upon completion, said the company.

For more information: www.smith-nephew.com

Related Content

Brainlab Introduces Loop-X Mobile Intraoperative Imaging Robot
News | Mobile C-Arms | September 26, 2019
Digital medical technology company Brainlab unveiled Loop-X, which it calls the first mobile intraoperative imaging...
AJR Publishes Gender Affirmation Surgery Primer for Radiologists. transgender radiology images,

Scout image from contrast-enhanced CT shows erectile implant; stainless steel and silicone anchors (arrow) transfixed to pubic bone are asymmetric.

News | Orthopedic Imaging | September 05, 2019
September 5, 2019 — An ahead-of-print article published in the December issue of the American Journal of Roentgen
Konica Minolta Healthcare Announces Autologous Biologics Workshop in Partnership With EmCyte Corp.
News | Ultrasound Imaging | June 12, 2019
Konica Minolta Healthcare announced a new autologous biologics workshop in partnership with EmCyte Corp. The workshop...
Aidoc Earns FDA Approval for AI for C-spine Fractures
Technology | Artificial Intelligence | June 11, 2019
Radiology artificial intelligence (AI) provider Aidoc announced the U.S. Food and Drug Administration (FDA) has cleared...
Quantitative Transmission Ultrasound Featured at Acoustical Society of America

Fused QT Ultrasound 3-D quantitative transmission ultrasound and compounded reflection axial images showing high resolution image of internal organs, tissue, skin and hair of neo-natal piglet. Anatomy courtesy of C. Ruoff, DVM.

News | Ultrasound Imaging | May 29, 2019
May 29, 2019 — QT Ultrasound recently showcased its advanced...
Hong Kong Polytechnic University Develops Palm-sized 3-D Scoliosis Ultrasound Imaging System
News | Ultrasound Imaging | May 03, 2019
The Hong Kong Polytechnic University (PolyU) announced the development of a palm-sized 3-D ultrasound imaging system...
Konica Minolta Dynamic Digital Radiography Receives FDA Clearance

With DDR, orthopedists and MSK specialists can acquire a full view of the MSK system in the supine and prone positions to view changes in the bone and articulations throughout the full range of motion. Image courtesy of Konica Minolta Healthcare Americas.

Technology | Digital Radiography (DR) | April 23, 2019
Konica Minolta Healthcare Americas Inc. announced that its Dynamic Digital Radiography (DDR) technology, introduced at...
Videos | Orthopedic Imaging | March 05, 2019
This is an example of a 3-D printed pelvis that had multiple hip fractures and a second printed pelvis is from a post
MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
Korean National Training Center Installs Carestream OnSight 3D Extremity System
News | Computed Tomography (CT) | February 07, 2019
Jincheon National Training Center in Jincheon, South Korea, installed a Carestream OnSight 3D Extremity System at its...