News | Radiation Therapy | December 11, 2019

Stanford University Medical Center to Acquire Second Accuray CyberKnife M6 System

New system will be used to treat diseases in the brain and base of the skull

#ASTRO Accuray Incorporated announced today Stanford University Medical Center has selected a second CyberKnife M6 System to expand access to precise radiosurgery treatments to more of their patients

December 11, 2019 — Accuray Incorporated announced today Stanford University Medical Center has selected a second CyberKnife M6 System to expand access to precise radiosurgery treatments to more of their patients. With its installation, the hospital's clinicians will have a CyberKnife System dedicated to the treatment of diseases in the brain and base of the skull, making it possible for the existing system to be used to treat more patients with tumors elsewhere in the body. The new CyberKnife System will be installed at the Stanford Neuroscience Health Center, a comprehensive facility offering integrated outpatient services in one location designed to provide more accurate diagnoses, organized care, better quality of life and improved outcomes for the patient.

"We value our long-standing partnership with the Stanford clinical team, one of the most respected in the world, and are proud that they are using the CyberKnife System to improve the outcomes of people diagnosed with serious medical conditions," said Joshua H. Levine, president and CEO at Accuray. "At Accuray, our goal is to provide clinicians with a system that makes it as easy as possible for them to provide the best possible outcome for their patients, based on each patient's unique condition. Over the course of our relationship with the Stanford team, they have acquired four CyberKnife Systems, reinforcing their continued confidence in the system and demonstrating that we are delivering on our goal." 

"This year marks 25 years since the world's first patient was treated with a prototype CyberKnife System at Stanford. While clinicians at our hospital have used some version of the system since that time, a dedicated system located in our neuroscience center will enable us to provide precise and accurate SRS treatments to significantly more patients," said Steven D. Chang, M.D., co-director, Stanford Surgical Neuro-Oncology Program, Co-Director, Stanford CyberKnife Program, Stanford University School of Medicine. "The introduction of the CyberKnife System changed the way diseases or tumors in the head are treated. The system established multi-session or fractionated treatment as a standard for cranial stereotactic radiosurgery, a technique that has brought meaningful benefits to patients and the medical field."

The CyberKnife System was designed to deliver stereotactic radiosurgery (SRS) without a rigid frame bolted to the patient's head, which some other systems use to prevent movement during treatment. It provides a precise and effective option for patients with diseases or tumors in the brain requiring single or multi-session treatments, and younger patients who would not be candidates for treatment with a fixed head frame. Since its introduction, advanced new functionality, including the VOLO Optimizer, has been added to the CyberKnife System, enabling clinicians to treat patients significantly faster, without sacrificing the precision or accuracy for which the system is known.

SRS typically involves the delivery of a single high-dose radiation treatment or a few fractionated radiation treatments (usually up to five treatments) to destroy all tissue within the tumor. The ability to deliver high doses of radiation in a single or a few fractions is called hypofractionation. Hypofractionation can only be undertaken with systems that are able to target the tumor with extreme precision and accuracy, as the CyberKnife System can, while minimizing delivered dose to surrounding healthy tissue. The CyberKnife System has been proven to deliver radiation to the skull with sub-millimeter accuracy (to within 1.0mm of the target)1, meaning minimal radiation is delivered to the surrounding healthy brain tissue.

The CyberKnife System is routinely used to treat conditions in the brain including, but not limited to, benign and malignant primary tumors, brain metastases, trigeminal neuralgia, acoustic neuromas and arteriovenous malformations (AVMs). CyberKnife radiosurgery is even used to treat complicated neurosurgical cases, while maximally sparing brain tissues involved in important functions such as hearing and vision.

For more information: www.accuray.com

Related Content

Novel scanners may open door for prognostic assessment in patients receiving cochlear implants

Iva Speck, MD, explains research showing that novel, fully digital, high-resolution positron emission tomography/computed tomography imaging of small brain stem nuclei can provide clinicians with valuable information concerning the auditory pathway in patients with hearing impairment. The research is featured in The Journal of Nuclear Medicine (read more at http://jnm.snmjournals.org/content/current). Video courtesy of Iva Speck, University Hospital Freiburg, Germany.

News | PET-CT | March 26, 2020
March 26, 2020 — Novel, fully digital, high-resolution...
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | March 19, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group

Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group. Racial/ethnic groups are mutually exclusive. Data for the non‐Hispanic American Indian/Alaska Native (AI/AN) population are restricted to Indian Health Service Purchased/Referred Care Delivery Area (PRCDA) counties. API indicates Asian/Pacific Islander. Chart courtesy of ACS Journals 

News | Radiation Oncology | March 16, 2020
March 16, 2020 — The Ann...
 “Cyclotrons used in Nuclear Medicine Report & Directory, Edition 2020” that describes close to 1,500 medical cyclotrons worldwide
News | Nuclear Imaging | March 10, 2020
March 10, 2020 — MEDraysintell released its new and unique report “...
Accuray Incorporated announced that Mercy Hospital St. Louis continues to demonstrate its commitment to improving patient outcomes with the installation of the first CyberKnife M6 System in Missouri at their state-of-the-art David C. Pratt Cancer Center
News | Stereotactic Body Radiation Therapy (SBRT) | February 27, 2020
February 27, 2020 — Accuray Incorporated announced that Mercy
An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.