News | Prostate Cancer | August 21, 2015

PET Imaging Detects Fast-Growing Prostate Cancer

PSMA-based PET to distinguish benign prostate lesions and prostate cancer

18F-DCFBC PET/CT

August 21, 2015 — A molecular imaging biomarker is able to detect fast-growing primary prostate cancer and distinguish it from benign prostate lesions, addressing an unmet clinical need. The new research, published in the July 2015 issue of The Journal of Nuclear Medicine, is significant for patients with suspected prostate cancer that has not been confirmed by standard biopsy.

“We were able to demonstrate in our research that PSMA positron emission tomography (PET) imaging was more specific than magnetic resonance imaging (MRI) for detection of clinically significant high-grade prostate cancer lesions, and importantly was able to distinguish benign prostate lesions from primary prostate cancer, currently a difficult diagnostic imaging task,” stated Steven P. Rowe, M.D., Ph.D., resident at Johns Hopkins Medical Institutions in Baltimore, Md. “Additionally, this work demonstrated a direct correlation between PSMA PET radiotracer activity in prostate cancer and prostate adenocarcinoma aggressiveness (Gleason score).” 

The study enrolled 13 patients with primary prostate cancer who were imaged with fluorine-18 (F-18) DCFBC PET prior to scheduled prostatectomy, with 12 of the patients also undergoing pelvic prostate MR imaging. Prostate F-18 DCFBC PET was correlated with MR imaging and histologic and immunohistochemical analysis on a prostate-segment (12 regions) and dominant-lesion basis. There were no incidental extraprostatic findings on PET suggestive of metastatic disease.

Results showed that MR imaging was more sensitive than F-18-DCFBC PET for detection of primary prostate cancer in a per-segment (sensitivities of 0.17 and 0.39 for PET and MR imaging, respectively) and per-dominant (sensitivities of 0.46 and 0.92 for PET and MR imaging, respectively) lesion analysis. However, F-18 DCFBC PET was more specific than MR imaging by per-segment analysis (specificity of 0.96 and 0.89 for PET and MR imaging for non-stringent analysis and 1.00 versus 0.91 for stringent analysis, respectively) and highly specific for detection of high-grade lesions greater than or equal to 1.1 mL in size (Gleason 8 and 9).

Steve Y. Cho, M.D., associate professor at the University of Wisconsin School of Medicine and Public Health, and senior corresponding author of this study, states that the findings contribute to the importance of PSMA-based PET imaging for detection and characterization of the biology of the prostate cancer.

“There are a number of PSMA-based PET agents currently being introduced into prostate cancer imaging, many with improved signal to background uptake and sensitivity from this earlier first-generation PSMA F-18 DCFBC PET radiotracer, which should further improve the detection of prostate cancer,” he said. “While it is difficult to predict which of the numerous prostate cancer molecular imaging agents being developed will ultimately become clinically adopted, this work, in aggregate with that of other groups, suggests there are important advantages to the PSMA ligands for prostate cancer molecular imaging.”

Aside from skin cancer, prostate cancer is the most prevalent form of cancer among men in the United States, according to 2014 statistics from the American Cancer Society. About 233,000 new cases of prostate cancer are expected to be diagnosed and about 29,480 prostate-cancer related deaths are estimated this year.

Authors of the article F-18 DCFBC PET/CT for PSMA-based Detection and Characterization of Primary Prostate Cancer” include Steven P. Rowe, Kenneth L. Gage, Katarzyna Macura, Amanda Blackford, Daniel Holt, Robert F. Dannals, Martin A. Lodge, Ronnie C. Mease, Martin G. Pomper, and Steve Y. Cho, The Russell H. Morgan Department of Radiology and Radiological Science; Sheila F. Faraj, Toby C. Cornish, Nilda Gonzalez-Roibon, Gunes Guner, Enrico Munari, and George J. Netto, Department of Pathology; and Alan W. Partin, Christian P. Pavlovich, Misop Han, H. Ballentine Carter, and Trinity J. Bivalacqua, The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD. This study was funded through the Prostate Cancer Foundation and RSNA Research and Education Foundation.

For more information: jnm.snmjournals.org.

Related Content

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief.

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief. Find more images from the COVID-19 pandemic.

 

Feature | Coronavirus (COVID-19) | April 08, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
A new framework from an international team of experts aims to help protect patients and providers, and conserve protective equipment for frontline healthcare workers #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Prostate Cancer | March 30, 2020
March 30, 2020 — In the wake of the COVID-19 pan
Novel scanners may open door for prognostic assessment in patients receiving cochlear implants

Iva Speck, MD, explains research showing that novel, fully digital, high-resolution positron emission tomography/computed tomography imaging of small brain stem nuclei can provide clinicians with valuable information concerning the auditory pathway in patients with hearing impairment. The research is featured in The Journal of Nuclear Medicine (read more at http://jnm.snmjournals.org/content/current). Video courtesy of Iva Speck, University Hospital Freiburg, Germany.

News | PET-CT | March 26, 2020
March 26, 2020 — Novel, fully digital, high-resolution...
Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group

Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group. Racial/ethnic groups are mutually exclusive. Data for the non‐Hispanic American Indian/Alaska Native (AI/AN) population are restricted to Indian Health Service Purchased/Referred Care Delivery Area (PRCDA) counties. API indicates Asian/Pacific Islander. Chart courtesy of ACS Journals 

News | Radiation Oncology | March 16, 2020
March 16, 2020 — The Ann...
A University of Colorado Cancer Center study published in the Journal of the National Cancer Institute shows an important predictor of PET-CT use

Rustain Morgan, M.D., and colleagues show racial/ethnic disparities in use of important imaging during lung cancer diagnosis. Photo courtesy of University of Colorado Cancer Center

News | PET-CT | March 12, 2020
March 12, 2020 — The use of PET-CT