News | Radiation Therapy | May 08, 2019

Novel Nanoparticle Enhances Radiation Tumor Killing

Highly effective even in the low-oxygen environment of tumors

The novel nanoparticle is designed to enhance radiation killing of cancer cells in the radiation resistant low-oxygen tumor core

The novel nanoparticle is designed to enhance radiation killing of cancer cells in the radiation resistant low-oxygen tumor core. Credit: Wenpei Fan, LOMIN Laboratory, NIBIB.

Upon radiation the nanoparticle produces oxygen free radicals and carbon monoxide, which kill cancer cells in the low-oxygen core of tumors

Upon radiation the nanoparticle produces oxygen free radicals and carbon monoxide, which kill cancer cells in the low-oxygen core of tumors. Credit: Wenpei Fan, LOMIN Laboratory, NIBIB.

May 8, 2019 — Radiation kills tumors by creating oxygen free radicals that damage the tumor DNA. However, the lack of oxygen in the center of tumors blocks the production of free radicals, inhibiting radiation killing. NIBIB researchers have now designed a nanoparticle that generates radiation-induced oxygen free radicals even in the low-oxygen center of tumors, dramatically increasing the success of radiation therapy.

Low oxygen (hypoxic) regions in the core of tumors results in strong resistance to radiation therapy, causing cancer invasion and metastasis. Hypoxia, a common feature of solid tumors, occurs in the core region of most cancers, so developing therapies that overcome the tumor hypoxia problem is a critical goal for increasing the effectiveness of cancer therapy.

In the NIBIB Laboratory of Molecular Imaging and Nanomedicine (LOMIN), headed by Xiaoyuan (Shawn) Chen, Ph.D., senior investigator, one of the main areas of research is the creation of nanoparticles that can target and kill tumors without harming surrounding healthy tissues. Towards that end the lab has created various nanoparticles, many that carry chemotherapy drugs such as doxorubicin, and release it at the tumor site.

In the current study spearheaded by Wenpei Fan, Ph.D., a postdoctoral fellow in the LOMIN laboratory, the nanoparticle is carrying a different class of molecules — compounds designed to work with radiation and enhance its ability to kill tumor cells. The work is reported in the March edition of the journal Nature Communications.1

The nanoparticle that they engineered is called a hollow mesoporous organosilica nanoparticle (HMON). Mesoporous refers to the size of the pores in the nanoparticle, through which anti-cancer compounds can be loaded and then released when they reach the tumor. A mesoporous material contains pores with a diameter between 2 and 50 nanometers. For comparison, microporous materials have pores smaller than 2 nanometers.

Organosilica refers to the basic structure, which is silica, a material like quartz. Specific organic molecules are added to the organosilica mix to create nanoparticles with the desired pore size for loading the anti-cancer compounds.

The researchers used a special technique called ammonia-assisted hot water etching to engineer very small nanoparticles. Creating very small nanoparticles was important because the smaller particles could travel to the center of the tumor, which was the primary goal of these experiments.

The small particles were made by starting out with a very small central bead that was basically the mold for the nanoparticle shell that was bound to the outside of the bead. However, the nanoparticles must be hollow to carry their cancer-killing payload. This is where the ammonia-assisted hot water etching came in. This particular method was used because it etches away or degrades the central bead but does not damage the outer coating. In this way the central bead was etched away, leaving the very small hollow mesoporous nanoparticle.

The nanoparticles were then loaded with two different compounds. One compound creates oxygen free radicals in an oxygen-rich environment of a tumor when hit with radiation, which is the outer portions of the tumor. The other compound is able to create oxygen free radicals when hit with radiation in the hypoxic core of the tumor. The oxygen free radicals are very reactive and they damage the tumor cell DNA, killing the cancer cells.

The loaded nanoparticles were tested in a human glioblastoma cell line for the amount of DNA damage that was generated when combined with radiation. A test that dyes the DNA fluorescent red clearly showed that the combination of the nanoparticles and radiation shredded the DNA of the glioblastoma cells compared with nanoparticles alone or radiation alone. Additional tests demonstrated that the nanoparticles generated oxygen free radicals when exposed to radiation in both normal and very low oxygen conditions, confirming that the system worked as designed.

The cancer cell killing of the HMONs was further enhanced by the fact that the two compounds loaded into the nanoparticles react with each other upon radiation. The result is the production of carbon monoxide gas, which is toxic to the cancer cells. The combination of the oxygen free radical killing and the carbon monoxide killing upon radiation resulted in what the researchers termed radio-dynamic therapy or RDT/gas therapy.

The RDT/gas therapy was tested in tumors in mice. When the nanoparticle was injected into the bloodstream of the mice without radiation there was only a minimal effect on the tumors. Radiation alone also had a minimal effect. However, when the nanoparticle was injected and then activated by radiation, the tumors shrank dramatically with no toxic effects on the organs of the mouse.

Said Fan, “We believe this RDT/gas therapy approach offers new possibilities for enhanced X-ray-activated treatment for future deep-cancer therapy. The next logical step is to optimize the structure and scale up nanoparticle synthesis to allow clinical translation of this type of radiotherapy enhancement.”

For more information: www.nature.com

 

Reference

1. Fan W. Lu N., Shen Z., et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, published online March 18, 2019. https://doi.org/10.1038/s41467-019-09158-1

Related Content

Drug Accelerates Blood System's Recovery After Radiation, Chemotherapy

Following radiation, the bone marrow shows nearly complete loss of blood cells in mice (left). Mice treated with the PTP-sigma inhibitor displayed rapid recovery of blood cells (purple, right). Credit: UCLA Broad Stem Cell Research Center/Nature Communications

News | Radiation Therapy | August 16, 2019
A drug developed by UCLA physician-scientists and chemists speeds up the regeneration of mouse and human blood stem...
Mevion and C-RAD Release Integration for Improved Proton Therapy Treatment Quality

Catalyst PT image courtesy of C-RAD

News | Patient Positioning Radiation Therapy | August 15, 2019
Mevion Medical Systems and C-RAD announced the integration between the C-RAD Catalyst PT and the Mevion S250i proton...
First Patient Enrolled in World's Largest Brain Cancer Clinical Trial
News | Radiation Therapy | August 15, 2019
Henry Ford Cancer Institute is first-in-the-world to enroll a glioblastoma patient in the GBM AGILE Trial (Adaptive...
Efficacy of Isoray's Cesium Blu Showcased in Recent Studies
News | Brachytherapy Systems | August 14, 2019
August 14, 2019 — Isoray announced a trio of studies recently reported at scientific meetings and published in medica
MD Anderson to Expand Proton Therapy Center

The MD Anderson Proton Therapy Center expansion is expected to be completed in 2023. Rendering courtesy of Stantec.

News | Proton Therapy | August 08, 2019
The University of Texas MD Anderson Cancer Center unveiled plans to expand its Proton Therapy Center during a...
Qfix kVue One Proton Couch Top Validated by Mevion Medical Systems
News | Patient Positioning Radiation Therapy | August 07, 2019
Qfix and Mevion Medical Systems announced that a special version of the kVue One Proton couch top is now both validated...
IBA Signs Contract to Install Proton Therapy Center in Kansas
News | Proton Therapy | August 06, 2019
IBA (Ion Beam Applications S.A.) recently signed a contract and received the first payment for a Proteus One solution...
The top piece of content in July was a video interview explaining how Princess Margaret Cancer Center is using machine learning to create automated treatment plans. This was a hot topic at the American Association of Physicists in Medicine (AAPM) 2019 meeting in July.

The top piece of content in July was a video interview explaining how Princess Margaret Cancer Center is using machine learning to create automated treatment plans. This was a hot topic at the American Association of Physicists in Medicine (AAPM) 2019 meeting in July. 

Feature | August 05, 2019 | Dave Fornell, Editor
August 5, 2019 — Here is the list of the most popular content on the Imaging Technology New (ITN) magazine website fr
Varian Showcases Cancer Care Systems and Software at AAPM 2019
News | Radiation Therapy | August 02, 2019
Varian showcased systems and software from its cancer care portfolio, including the Identify Guidance System, at the...
Laura Dawson, M.D., FASTRO, Chosen as ASTRO President-elect
News | Radiation Oncology | July 31, 2019
The members of the American Society for Radiation Oncology (ASTRO) elected four new officers to ASTRO’s Board of...