News | Radiology Imaging | July 02, 2015

3.0T functional MRI allows first simultaneous imaging of the brain and spinal column

spinal cord, learning, fMRI, University of Montreal

July 2, 2015 - The spinal cord engages in its own learning of motor tasks independent of the brain, according to an imaging study published June 30th in the Open Access journal PLOS Biology. The results of the study - conducted by Shahabeddin Vahdat, Ph.D., Ovidiu Lungu, and principal investigator Julien Doyon, Ph.D., of the University of Montreal, Quebec, Canada - may offer new opportunities for rehabilitation after spinal cord injury.

Learning a complex motor task, such as touch typing or playing the piano, induces changes in the brain, which can be monitored using functional magnetic resonance imaging (fMRI). During learning, sensory information and motor commands pass through the spinal cord, but to date it has been challenging to perform fMRI on the brain and spinal cord simultaneously, and thus it has been difficult to determine whether observed changes in the spinal cord during motor skill acquisition depend entirely on signals from the brain, or occur independently.

That barrier was overcome for the first time in this study by taking advantage of the fact that the 3.0T MRI scanner had a field of view long enough to image the brain and the cervical spinal cord, which relays signals to and from the hand muscles. Using this technique on subjects performing a complex finger tapping task, the authors showed that learning-related changes in blood flow in the spinal cord were independent of changes in blood flow in the brain regions involved in the task.

The results of the study indicate that the spinal cord plays an active role in the very earliest stages of motor learning. Future work will be needed to confirm that the changes seen in the spinal cord persist over time and generalize to other stages of learning and other forms of motor skills. The discovery of an independent role in learning for the spinal cord may provide new avenues for relearning motor tasks after spinal cord injury, when the connections between brain and cord are impaired.

For more information: www.plosbiology.org


Related Content

News | PET Imaging

April 24, 2024 — A new study from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare ...

Time April 24, 2024
arrow
News | Radiology Business

April 23, 2024 — A diverse writing group—lead by authors at the University of Toronto—have developed an approach for ...

Time April 23, 2024
arrow
News | FDA

April 23, 2024 — Royal Philips , a global leader in health technology, today announced its Philips Zenition 30 mobile C ...

Time April 23, 2024
arrow
News | Ultrasound Imaging

April 22, 2024 — GE HealthCare announced the launch of the Voluson Signature 20 and 18 ultrasound systems, which ...

Time April 22, 2024
arrow
News | Lung Imaging

April 17, 2024 — A Medicare policy requiring primary care providers (PCPs) to share in the decision-making with patients ...

Time April 17, 2024
arrow
News | Radiology Business

April 17, 2024 — VISTA.AI announced the appointment of Daniel Hawkins as President and CEO. The company is pioneering AI ...

Time April 17, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

April 17, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with the ...

Time April 17, 2024
arrow
News | ACR

April 15, 2023 — The American College of Radiology (ACR) released an update to its ACR Appropriateness Criteria (ACR AC) ...

Time April 13, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

April 10, 2024 — Online MRI and CT education leader, ImagingU, announced the launch of a new course for students and ...

Time April 10, 2024
arrow
Feature | Radiation Oncology | By Melinda Taschetta-Millane

In a new 3-part video series on advancements in diagnostic radiology with Robert L. Bard, MD, PC, DABR, FASLMS ...

Time April 10, 2024
arrow
Subscribe Now