Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Sponsored Content | Blog | Greg Freiherr, Industry Consultant | Contrast Media | July 31, 2019

BLOG: How Advances in Technology Help Patients and Providers

Power injectors can improve efficiency and patient safety, for example, ensuring that contrast agent is not wasted due to the lack of a saline bolus. Image courtesy of Lior Molvin

Power injectors can improve efficiency and patient safety, for example, ensuring that contrast agent is not wasted due to the lack of a saline bolus. Image courtesy of Lior Molvin

Patient safety and operational efficiency are behind the development of modern contrast media, selection and utilization strategies — as well as refinements in the injector technologies for these media. Much remains to be done.

New agents for MRI and diagnostic sonography were created to get the most from these imaging modalities, which do not rely on ionizing radiation — gadolinium-based agents for MRI; bubble agents for diagnostic ultrasound. The development some three decades ago of nonionic iodinated contrast agents exemplifies the importance of patient safety as a force underlying the development of modern contrast agents.1, 2

Similarly, low-osmolar nonionic contrast agents for CT may have fewer side effects and less nephrotoxicity than traditional ionic, high-osmolar agents. Intravenous MRI contrast agents are not toxic to the kidney, but the development of NSF (nephrogenic systemic fibrosis) is a continuing concern, say opinion leaders. The clinical significance and reason for gadolinium accumulation in tissue among patients without renal impairment, they say, is not known.

It is known, however, that the nonionic molecules of gadolinium chelates have lower osmolality and viscosity, which makes them more digestible at higher concentrations and allows faster bolus injections.3

Sonographic agents use microbubbles to improve the diagnostic yield,4 while maintaining safety.5

 

Technological Evolution Picking Up

From now on, however, much of the innovation involving contrast-enhanced studies will likely involve the power injector. And its evolution could be dramatic.

Just as the cell phone has become much more than a phone, contrast injectors are evolving into new — and different —- roles. Injector-oriented technologies, for example, are already available in the management of protocols and the supply chain. These tools could help assess waste, the number of extravasations, technologist performance, site and shift performance, even department budgets.

“Beyond the obvious ability to standardize injections (to achieve) image consistency, there are so many opportunities for injectors to become clinical devices that cannot be lived without,” said Lior Molvin, a CT technologist and protocol manager for the diagnostic CT group at Stanford Health Care in Palo Alto, Calif.

Simple algebraic tools might be built into injectors, Molvin said. Power injectors could help departments with “just-in-time” supply, for example. This would improve efficiency by reducing the need to over stock contrast agents. “The injector would know exactly how much contrast it has injected, so we would know how much we need to order in order to maintain operational efficiency,” he said. The injector might even link to a data base associated with the ordering cycle.

Injectors could also automatically consider the size of the patient — tall or short; skinny, average or obese — saving time that technologists otherwise may spend factoring body habitus into injection strategies and protecting patients from over- and under-dosing. Even more might be accomplished with the integration of smart algorithms that check the circumstances surrounding extravasations, especially as they pertain to CT and MRI.

 

Greg Freiherr is a contributing editor to ITN. Over the past three decades, he has served as business and technology editor for publications in medical imaging, as well as consulted for vendors, professional organizations, academia, and financial institutions.

 

Editor’s Note: This is the second blog in a series titled Using Contrast Media. The first blog, Why Power Injectors Are Needed for High-quality Imaging, can be found here. How customer needs factor into product innovation will be the focus of the next blog in this series.

 

References:

  1. Pradubpongsa P, Dhana N, Jongjarearnprasert K, et al. Adverse reactions to iodinated contrast media: prevalence, risk factors and outcome-the results of a 3-year period. Asian Pac J Allergy Immunol. 2013;31(4):299-306. https://www.ncbi.nlm.nih.gov/pubmed/24383973
  2. McClennan BL. Ionic and nonionic iodinated contrast media: Evolution and strategies for use. AJR Am J Roentgenol. 1990;155(2):225-233.
  3. Hunt CH, Hartman RP, Hesley GK. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: Retrospective review of 456,930 doses. AJR Am J Roentgenol. 2009;193:1124-1127. https://www.ncbi.nlm.nih.gov/pubmed/19770337
  4. Ignee A, Atkinson, NSS, et.al. Ultrasound contrast agents. Endosc Ultrasound. 2016 Nov-Dec; 5(6): 355–362. http://www.eusjournal.com/article.asp?issn=2303-9027;year=2016;volume=5;issue=6;spage=355;epage=362;aulast=Ignee
  5. Ultrasound Societies Urge FDA to Remove Black Box Warning on Contrast Agents https://www.itnonline.com/content/ultrasound-societies-urge-fda-remove-black-box-warning-contrast-agents

 

Related Content

Novel scanners may open door for prognostic assessment in patients receiving cochlear implants

Iva Speck, MD, explains research showing that novel, fully digital, high-resolution positron emission tomography/computed tomography imaging of small brain stem nuclei can provide clinicians with valuable information concerning the auditory pathway in patients with hearing impairment. The research is featured in The Journal of Nuclear Medicine (read more at http://jnm.snmjournals.org/content/current). Video courtesy of Iva Speck, University Hospital Freiburg, Germany.

News | PET-CT | March 26, 2020
March 26, 2020 — Novel, fully digital, high-resolution...
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | March 19, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group

Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group. Racial/ethnic groups are mutually exclusive. Data for the non‐Hispanic American Indian/Alaska Native (AI/AN) population are restricted to Indian Health Service Purchased/Referred Care Delivery Area (PRCDA) counties. API indicates Asian/Pacific Islander. Chart courtesy of ACS Journals 

News | Radiation Oncology | March 16, 2020
March 16, 2020 — The Ann...
Accuray Incorporated announced that Mercy Hospital St. Louis continues to demonstrate its commitment to improving patient outcomes with the installation of the first CyberKnife M6 System in Missouri at their state-of-the-art David C. Pratt Cancer Center
News | Stereotactic Body Radiation Therapy (SBRT) | February 27, 2020
February 27, 2020 — Accuray Incorporated announced that Mercy
An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.