new study published on European Radiology evaluates the image quality of low iodine concentration, dual-energy CT (DECT) combined with a deep learning–based denoising technique with ClariCT.AI for pediatric abdominal CT, compared with that of standard iodine concentration single-energy polychromatic CT (SECT).

January 19, 2021 — Radiation exposure and side effects related to iodine contrast agents are the two main concerns of contrast enhanced computed tomography (CT) examinations. A new study published in European Radiology evaluates the image quality of low iodine concentration, dual-energy CT (DECT) combined with a deep learning–based denoising technique with ClariCT.AI for pediatric abdominal CT, compared with that of standard iodine concentration single-energy polychromatic CT (SECT). ClariCT.AI is an AI-based CT image denoising solution from ClariPi, Inc. The study reported that the use of a deep learning–based denoising technique was able to produce the same overall image and diagnostic quality of lesions despite a reduced iodine dose and decreased radiation dose. According to the study, the advantage of the low-concentration iodine use in conjunction with DECT and deep learning-based denoising was two-fold. The results show that the CT dose index and total iodine administration in DECT were respectively 19.6% and 14.3% lower than those in SECT.

The study method was done with DECT with 300 mg•I/mL contrast medium and was performed in 29 pediatric patients (17 boys, 12 girls; age, 2–19 years). The DECT images were reconstructed using a noise-optimized virtual mono-energetic reconstruction image (VMI) with a deep learning method. SECT images with 350 mg•I/mL contrast medium, performed within the last 3 months before the DECT, served as reference images. The quantitative and qualitative parameters were compared using paired t tests and Wilcoxon signed-rank tests, and the differences in radiation dose and total iodine administration were assessed.

The article concluded that ClariCT.AI deep learning-based noise-optimized VMI data using low iodine concentration (300 mg•I/mL) could maintain image quality while reducing radiation dose and iodine load. Therefore, this approach may be beneficial for pediatric abdominal CT scans.

For more information: www.claripi.com


Related Content

News | Cardiac Imaging

May 17, 2024 — The Cum Laude Award-Winning Online Poster presented during the 124th ARRS Annual Meeting found that the ...

Time May 17, 2024
arrow
Sponsored Content | Case Study | Enterprise Imaging

Having the most efficient clinical workflows with enhanced diagnostic capabilities is a major goal for clinicians and ...

Time May 16, 2024
arrow
News | Artificial Intelligence

May 15, 2024 — Heart disease is the leading cause of mortality in the U.S., accounting for one out of every five deaths ...

Time May 15, 2024
arrow
News | Pediatric Imaging

May 15, 2024 — Transfer learning (TL) models trained on heterogeneous public datasets and fine-tuned using institutional ...

Time May 15, 2024
arrow
News | Radiology Business

May 14, 2024 — University Hospitals (UH) and Siemens Healthineers announce a 10-year strategic alliance that builds on ...

Time May 14, 2024
arrow
News | Prostate Cancer

May 13, 2024 — Avenda Health, an AI healthcare company creating the future of personalized prostate cancer care, unveils ...

Time May 13, 2024
arrow
News | Contrast Media

May 8, 2024 — Swedish biotech company Ascelia Pharma AB has announced that its liver imaging drug candidate, Orviglance ...

Time May 08, 2024
arrow
News | RSNA

May 7, 2024 — The Radiological Society of North America (RSNA) and the Radiological and Diagnostic Imaging Society of ...

Time May 07, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

May 7, 2024 — The Magna Cum Laude Award-Winning Online Poster presented during the 124th ARRS Annual Meeting showed a ...

Time May 07, 2024
arrow
News | ARRS

May 7, 2024 — The American Roentgen Ray Society (ARRS) announced that Philip Costello, MD, the 118th ARRS President and ...

Time May 07, 2024
arrow
Subscribe Now