News | Medical 3-D Printing | January 06, 2017

German research team constructs single-compartment models to demonstrate potential for quantitative SPECT/CT imaging

SPECT-CT, 3-D printing, University of Wurzburg, Germany, Johannes Tran-Gia, dosimetry calibration

SPECT/CT reconstructions and VOIs used for determination of calibration factors for the adult kidney filled with Lu-177 (A) and the corresponding sphere filled with I-131 (B). Credit: University of Würzburg


January 6, 2017 — In nuclear medicine, the goal is to keep radiation exposure at a minimum, while obtaining quality images. Optimal dosing for individual patients can be difficult to determine. That’s where 3-D-printed organ models of varying size and shape could be of great use.

In a study reported in the December issue of The Journal of Nuclear Medicine, researchers at the University of Würzburg in Würzburg, Germany, demonstrated that low-cost 3-D printing technology can be used for clinical prototyping. Johannes Tran-Gia, Ph.D., the study’s corresponding author, explained, ‟This research shows a way of producing inexpensive models of patient-specific organs/lesions for providing direct and patient-specific calibration constants. This is particularly important for imaging systems suffering from poor spatial resolution and ill-defined quantification, such as SPECT [single photon emission computed tomography]/CT.”

To demonstrate the potential of 3-D printing techniques for quantitative SPECT/CT imaging, kidneys — as organs-at-risk in many radionuclide therapies — were selected for the study.

A set of four one-compartment kidney dosimetry phantoms and their spherical counterparts with filling volumes between 8 mL (newborn) and 123 mL (adult) were designed based on the outer kidney dimensions provided by Medical Internal Radiation Dose (MIRD) guidelines. Based on these designs, refillable, waterproof and chemically stable models were manufactured with a fused deposition modeling 3-D printer. Nuclide-dependent SPECT/CT calibration factors for technetium-99m (Tc-99m), lutetium-177 (Lu-177), and iodine-131 (I-131) were then determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

Tran-Gia noted, ‟Although in our study the kidneys were modeled as a relatively simple one-compartment model, the study represents an important step towards a reliable determination of absorbed doses and, therefore, an individualized patient dosimetry of other critical organs in addition to kidneys.”

Ultimately, affordable 3-D printing techniques hold the potential for manufacturing individualized anthropomorphic phantoms in many nuclear medicine clinical applications.

For more information: www.jnm.snmjournals.org


Related Content

News | ASTRO

May 17, 2024 — Registration opens today for the American Society for Radiation Oncology's (ASTRO) 66th Annual Meeting ...

Time May 17, 2024
arrow
News | Radiopharmaceuticals and Tracers

May 8, 2024 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and commercialization of ...

Time May 08, 2024
arrow
News | Radiation Therapy

May 1, 2024 — Sun Nuclear, a Mirion Medical company, today announced the upcoming version 5.0 release of its SunCHECK ...

Time May 01, 2024
arrow
News | Radiopharmaceuticals and Tracers

April 5, 2024 — RLS Radiopharmacies, America’s only Joint Commission-accredited radiopharmacy network, today announced ...

Time April 05, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | Radiopharmaceuticals and Tracers

February 21, 2024 — Blue Earth Therapeutics, a Bracco company and emerging leader in the development of innovative next ...

Time February 21, 2024
arrow
News | Radiopharmaceuticals and Tracers

February 14, 2024 — PanTera, the Belgian joint venture created by IBA and SCK CEN to secure large-scale production of ...

Time February 14, 2024
arrow
News | Quality Assurance (QA)

February 12, 2024 — IBA, a world leader in particle accelerator technology and a world-leading provider of dosimetry and ...

Time February 12, 2024
arrow
News | PET Imaging

February 9, 2024 — A novel PET imaging technique can noninvasively detect active inflammation in the body before ...

Time February 09, 2024
arrow
Subscribe Now