News | March 25, 2015

Prostate Tumor Molecules Might Predict Whether Radiation Therapy Can Help Prevent Recurrence

MicroRNA molecules could distinguish earlier which patients will benefit from follow-up treatment

OSUCCC, prostate cancer, miRNA, recurrence, radiation therapy

March 25, 2015 — A group of molecules in prostate-cancer cells could one day be used to distinguish which patients with rising prostate-specific antigen (PSA) levels should be treated with radiation therapy following prostate removal.

The retrospective study that led to this discovery was helmed by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James). The study suggested that a pattern of molecules called microRNA (miRNA) in tumor cells might predict patients’ response to radiation therapy.

In particular, the study suggests that two miRNAs – miR-4516 and miR-601 – in tumor cells, along with Gleason score and lymph node status, may help identify patients who might experience rising PSA after they’ve been treated with radiation therapy.

“This study is the first to demonstrate that miRNA expression in tumor cells correlates with outcome after salvage radiation therapy, paving the way for the potential use of miRNA biomarkers in prostate cancer treatment,” said first author Erica Hlavin Bell, Ph.D., assistant professor-clinical in radiation oncology.

In addition, the researchers correlated a pattern of 88 miRNAs with tumors that first recurred early after prostatectomy – within three years or less – versus tumors that recurred after three years.

The findings are published in the journal PLOS ONE.

“If validated by further studies, these findings could change clinical practice and improve the care of prostate-cancer patients,” said study leader Arnab Chakravarti, M.D., chair and professor of radiation oncology.

“Men found to have aggressive disease at the time of prostatectomy could be offered additional treatment with radiation therapy to prevent recurrence, while sparing men with slow-growing tumors,” added Chakravarti, who holds the Max Morehouse Chair of Cancer Research.

“These findings are important because it is currently hard to distinguish early which patients will benefit from radiation therapy following radical prostatectomy and which will receive no benefit,” said Bell. “Our novel microRNA panel might also shed light on the underlying mechanisms of treatment resistance in prostate cancer.”

Prostate cancer is the most frequently diagnosed cancer in men. An estimated 220,800 new cases are expected in the United States in 2015, along with 27,540 deaths from recurrent disease. Currently, rising blood levels of PSA, a protein made by the prostate gland, are used as indicators of tumor recurrence.

Removal of the prostate is widely used to treat men with early-stage disease. But up to 30 to 40 percent of these patients experience rising PSA levels after surgery, and these patients are often treated using radiation therapy.

This study analyzed preserved tumor samples from 43 prostate cancer patients who later received radiation therapy after rising PSA levels were detected following a radical prostatectomy.

The study’s key findings include:

  • A new model for recurrence based on rising PSA levels was developed; the model is based on miR-4561 and miR-601, together with Gleason score and lymph node status;
  • The model significantly improved prediction of response to radiation therapy over the use of Gleason score and lymph-node status alone; and
  • 88 miRNAs were associated with time-to-first-recurrence after a radical prostatectomy.

 

Funding from the NIH/National Cancer Institute supported this research.

For more information: www.cancer.osu.edu

Related Content

MRI Targeted biopsy is performed using cognitive fusion more easily with anatomical guidance based on the radiology report. MRI targets can be identified quickly in real-time along with micro-ultrasound targets, which may have been missed on MRI.

MRI Targeted biopsy is performed using cognitive fusion more easily with anatomical guidance based on the radiology report. MRI targets can be identified quickly in real-time along with micro-ultrasound targets, which may have been missed on MRI. Image courtesy of Exact Imaging

Feature | Prostate Cancer | January 20, 2021 | By Brian Wodlinger, Ph.D.
Historically when a patient had an elevated PSA (prostate specific antigen) test their urologist would take the next
The exceptionally high dose rate of the FLASH Beam is 3,000 times higher than normal therapy treatment (300 Gray per second vs. 0.1 Gray per second, Gray being a standard unit measuring absorbed radiation). Instead of treatment over 20 seconds, an entire treatment is completed in 6 milliseconds, giving the therapy its nickname, "FLASH." Image courtesy of Brian Pogue, PhD

The exceptionally high dose rate of the FLASH Beam is 3,000 times higher than normal therapy treatment (300 Gray per second vs. 0.1 Gray per second, Gray being a standard unit measuring absorbed radiation). Instead of treatment over 20 seconds, an entire treatment is completed in 6 milliseconds, giving the therapy its nickname, "FLASH." Image courtesy of Brian Pogue, PhD

News | Linear Accelerators | January 20, 2021
January 20, 2021 — A joint team of researchers from Radiation Oncology at Dartmouth's and...
Novel Coronavirus SARS-CoV-2 Transmission electron micrograph of SARS-CoV-2 virus particles, isolated from a patient. Image captured and color-enhanced at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: National Institute of Allergy and Infectious Diseases, NIH

Novel Coronavirus SARS-CoV-2 Transmission electron micrograph of SARS-CoV-2 virus particles, isolated from a patient. Image captured and color-enhanced at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Image courtesy of  National Institute of Allergy and Infectious Diseases (NIH)

News | Coronavirus (COVID-19) | January 15, 2021
January 15, 2021 — In one of the first studies to examine the impact of the...
The "US Prostate Cancer Nuclear Medicine Diagnostics Market to 2027 - Country Analysis and Forecast by Type; PET Product" report has been added to ResearchAndMarkets.com's offering. The prostate cancer nuclear medicine diagnostics market in the US was valued at $194.47M in 2019 and is expected to grow at a CAGR of 10.6% from 2020 to 2027 to reach $431.76M by 2027.

Getty Images

News | Prostate Cancer | January 13, 2021
January 13, 2021 — The ...
Myocarditis among recovering COVID-19 athletes less common than previously reported

Getty Images

News | Cardiac Imaging | January 11, 2021
January 11, 2021 — In a letter published in the December issue of the American Heart Association's...
A study led by researchers at the UCLA Jonsson Comprehensive Cancer Center has found that magnetic resonance imaging, or MRI, frequently underestimates the size of prostate tumors, potentially leading to undertreatment.

A study led by researchers at the UCLA Jonsson Comprehensive Cancer Center has found that magnetic resonance imaging, or MRI, frequently underestimates the size of prostate tumors, potentially leading to undertreatment.

News | Prostate Cancer | January 11, 2021
January 11, 2021 — A study
Jeff Elias, MD, is a neurosurgeon at UVA Health and a pioneer in the field of focused ultrasound.

Jeff Elias, MD, is a neurosurgeon at UVA Health and a pioneer in the field of focused ultrasound. Image courtesy of UVA Health

News | Focused Ultrasound Therapy | January 08, 2021
January 8, 2021 — A scalpel-free alternative to brain surgery has the potential to benefit people with...
Mirion Technologies, Inc., a global provider of innovative radiation detection and measurement solutions, announced that it has acquired Sun Nuclear Corporation. Sun Nuclear is the global leader in radiation oncology quality assurance, delivering patient safety solutions for diagnostic imaging and radiation therapy centers around the world.
News | Quality Assurance (QA) | January 08, 2021
January 8, 2021 — Mirion Technologies, Inc., a global provider of