News | Radiopharmaceuticals and Tracers | October 27, 2017

Michael J. Fox Foundation and Tau Consortium Developing PET Tracers for Neurodegenerative Disease

Partnership will focus on creating imaging tracers for the detection of alpha-synuclein and tau proteins in the living brain

Michael J. Fox Foundation and Tau Consortium Developing PET Tracers for Neurodegenerative Disease

October 27, 2017 — The Michael J. Fox Foundation for Parkinson's Research (MJFF) and the Tau Consortium announced a funding partnership to accelerate development of novel positron emission tomography (PET) imaging tracers for the detection of the alpha-synuclein and tau proteins in the living brain.

Several neurodegenerative diseases — Parkinson's disease, Lewy body dementia, multiple system atrophy, progressive supranuclear palsy and frontotemporal dementia, among others — involve the aggregation of alpha-synuclein and/or tau. Tools to detect the location and abundance of these proteins would improve clinical care and speed drug development by allowing earlier and more definitive diagnosis, more precise trial subject selection, and more efficient and conclusive therapeutic impact assessment.

"The ability to monitor disease, potentially even before symptom onset, would revolutionize the patient care experience and the pace of drug development," said MJFF CEO Todd Sherer, Ph.D. "This partnership with the Tau Consortium will bring us closer to that goal."

Patrick Brannelly, program director of the Tau Consortium, said, "The process of developing a new PET tracer is challenging, complex and iterative. It makes sense for nonprofits and industry to pool their resources in pursuit of success."

Under this new partnership, the Tau Consortium and MJFF will convene and co-fund a team of leading scientists who will closely coordinate their development of compounds that may bind to alpha-synuclein or tau. Gil Rabinovici, M.D., of the University of California, San Francisco, will direct the initiative. The inaugural grantees are Chester Mathis, Ph.D., director of the University of Pittsburgh PET Facility, and Neil Vasdev, Ph.D., co-founder of MedChem Imaging LLC.

"It's an honor to work alongside these outstanding investigators and as the director of such an important initiative," said Rabinovici. "Presently, these protein aggregates can be measured only at autopsy. Our field needs better tools to enable earlier intervention with potentially disease-modifying treatments."

PET tracers to evaluate protein load in the living brain would allow clinicians and researchers to diagnose people in prodromal or early disease stage, leading care decisions and earlier intervention with potentially disease-modifying treatments. A hypothesis for why some drugs in testing fail is that study participants are too advanced in the disease; a nuclear imaging tracer would allow testing in earlier-stage volunteers. Additionally, data from PET tracers would allow researchers to evaluate the biological impact of their candidate drugs.

Given the importance of this technology, MJFF and the Tau Consortium have invested significantly in this area of research. For example, The Michael J. Fox Foundation is supporting other projects pursuing an alpha-synuclein PET tracer and last year announced a $2 million prize to the first group to develop a viable selective tracer and agree to make the tool available broadly.

For more information: www.michaeljfox.org, www.tauconsortium.org

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
Book Chapter Reports on Fonar Upright MRI for Hydrocephalus Imaging

Rotary misalignment of atlas (C1) and axis (C2). Image courtesy of Scott Rosa, DC, BCAO.

News | Magnetic Resonance Imaging (MRI) | March 20, 2019
Fonar Corp. reported publication of a chapter where the physician-author-researchers utilized the Fonar Upright Multi-...
Gregory W. Albers, M.D., Receives Distinguished Clinical Research Achievement Award for Stroke Research
News | Stroke | March 19, 2019
iSchemaView announced the company’s co-founder Gregory Albers, M.D., has received the Distinguished Clinical Research...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Non-Contrast MRI Effective in Monitoring MS Patients
News | Neuro Imaging | March 18, 2019
Brain magnetic resonance imaging (MRI) without contrast agent is just as effective as the contrast-enhanced approach...
New MRI Sensor Can Image Activity Deep Within the Brain
News | Magnetic Resonance Imaging (MRI) | March 15, 2019
Calcium is a critical signaling molecule for most cells, and it is especially important in neurons. Imaging calcium in...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Iron Measurements With MRI Reveal Stroke's Impact on Brain

Images show illustrative examples of visual R2? modifications within substantia nigra (SN) at baseline (24-72 h) and follow-up (1 y) in striatum (participants 1 and 2) and control groups (participants 3 and 4). Image courtesy of the Radiological Society of North America (RSNA).

News | Stroke | March 12, 2019
March 12, 2019 — A simple ...