Dave Fornell, ITN Editor
Dave Fornell, ITN Editor

Dave Fornell is the editor of ITN and DAIC magazines

Blog | Dave Fornell, ITN Editor | X-Ray | December 21, 2015

X-ray Has Come a Long Way in 100 Years

Left, the first X-ray ever made of Roentgen's wife's hand in 1895. Right, a cone-beam CT 3-D reconstruction of a hand in 2015 using a new robotic digital radiography (DR) X-ray system.

Left, the first X-ray ever made of Roentgen's wife's hand in 1895. Right, a cone-beam CT 3-D reconstruction of a hand in 2015 using a new robotic digital radiography (DR) X-ray system. 

Being an avid student of history, I am always looking for parallels and comparisons in everything I see. For this reason, I was very struck by the latest X-ray technology displayed at the 2015 meeting of the Radiological Society of North America (RSNA) in December. Being in its 101st annual RSNA meeting, and the 120th anniversary of the discovery of X-rays, you would think that there is not much new in regards to X-ray technology. However, one of the images included in a Siemens press kit for their new robotic X-ray room technology, for me, brought the world of radiology full circle from its inception more than a century ago, to the bleeding edge of medical technology today.

Two weeks after Wilhelm Roentgen first discovered what he termed as X-rays in 1895 (he used the mathematical “X” to describe something unknown), he produced the first X-ray image of his wife’s hand. This image was the first medical imaging photo published in the first scientific article on medical imaging in December 1895. The breakthrough technology rapidly revolutionized medicine and earned Roentgen the first Nobel Prize in physics in 1901

Being the symbol of the birth of radiology and modern medical imaging, this image of Roentgen’s wife’s hand was the first thing I thought of when I ran across an image of a cone-beam computed tomography (CT) 3-D reconstruction of a hand created by Siemens' new Multitom Rax robotic X-ray system. The comparison of hand X-rays now and then is a simple comparison of how far X-ray technology has advanced, from a fuzzy image of phalanges to a surgical, photo-quality view of the bone.

The Multitom Rax room installed system uses two robotic arms to precisely align the X-ray tube and detector panels in any position. It is designed to be an all-in-one X-ray room solution for conventional 2-D radiography, fluoroscopic exams, basic angiography applications and to create 3-D cone-beam CT images. The cone beam CT technology uses a series of X-rays shot in an arc around the patient to collect a volume of data, similar to a CT scanner collecting a volume of data through a series of scan slices. The computer can then post-process the cone beam dataset into 3-D image reconstructions. 

Up until recently, dedicated X-ray systems were used for specific types of X-ray applications such as angiography, CT, digital radiography or fluoroscopy. This is likely the first X-ray system to be able to fulfill all of these imaging applications (at least on a basic level) using one platform. Cone beam CT created from a series of X-ray images previously found a niche in the cath lab, where newer C-arm systems can perform a rotational angiography spin around a patient and a 3-D image of the anatomy can be created tableside for use as a guidepost to landmark anatomy not visible on angiography alone. 

Cone beam CT is used for advanced dental imaging and as onboard 3-D imaging on some radiation therapy treatment systems. It is now finding a new niche in orthopedic imaging as a less expensive, lower-dose and immediately available option, rather than separate X-ray and CT exams. Carestream adapted its cone beam technology commercialized for the dental market to a larger system aimed at the orthopedics market at a fraction of the cost of a CT scanner. The new system was displayed for the first time at RSNA 2015. 

For more on the latest digital radiography (DR) X-ray technology, visit the landing page with videos and articles "Technology Report: Digital Radiography (DR)." 

Watch a video on some of the most innovative new imaging technology at RSNA 2015. 

Related Content

Medical imaging technology company Oxipit announced partnership with Swiss medical distribution company Healthcare Konnect to bring ChestEye AI imaging suite to healthcare institutions in Nigeria
News | Artificial Intelligence | January 22, 2020
January 22, 2020 — Medical imaging technology company Oxipit ann
Sponsored Content | Videos | Enterprise Imaging | January 20, 2020
GE Healthcare's iCenter is a cloud-based management software that provides 24/7 visibility to customers' visual and o
This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Nanox secures $26M supported by strategic investment from Foxconn, unveiling the Startek-inspired AI Biobed for early detection
News | X-Ray | January 16, 2020
January 16, 2020 — Nanox, an innovative medical imaging techn
Carestream’s X-ray digital tomosynthesis functionality creates three-dimensional datasets from digital radiography (DR) that can be scrolled through similar to computed tomography (CT) imaging. It received 510(k) clearance from the U.S. Food and Drug Administration (FDA) in January 2020. Digital tomosynthesis uses a single sweep of X-ray exposures and streamlines operator workflow by separating the process of DT exposure acquisition from image volume formation.
News | Digital Radiography (DR) | January 15, 2020
January 15, 2020 — Carestream’s X-ray digital tomosynthesis (DT) functionality, which creates three-dimensional datas
Videos | RSNA | January 13, 2020
ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the
Sponsored Content | Videos | Digital Radiography (DR) | January 06, 2020
An experienced technologist and two Agfa executives talk about what distinguishes the new Agfa 100s.