Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | August 11, 2011

Trump Card in the Deck of Hybrids

In the yesteryears of over-optimism, when medical imaging was in its heyday, magnetic resonance spectroscopy (MRS) was framed as a kind of digital phantom that would one day wrest the biopsy needle from the hands of oncologists. MRS, with its graphs and hard numbers characterizing the metabolites present in tissue, would illuminate the biochemical fingerprint of cancer.  

That pipe dream went up in smoke as the 20th century drew to a close, when MRS advocates were seen as victims of the da Vinci syndrome – that ideas, while reasonable, were not feasible because technology was not yet up to the task. The past decade, however, has swept much of the technological challenge aside. The adoption of 3T, which began in earnest midway through the last decade, along with the evolution of 1.5T scanners with the horsepower to do MRS, has put spectroscopy at the fingertips of many in routine clinical practice. Vendors offer training courses in its use. Yet, very little has changed.

Despite a cornucopia of MRS packages – some so easy even a gecko could run them – spectroscopy remains largely a research tool, driven by forward-thinking, forward-looking visionaries.  One reason is that long-repeated practices are hard to change…and needle biopsy is one of the longest. Another is that functional imaging, namely positron emission tomography/computed tomography (PET/CT), is widely available and its usage is still trending upward, albeit less so than a few years ago.

Given these incontrovertible facts, needle biopsy will likely remain the go-to procedure for definitively diagnosing cancer. And similarly, PET/CT will likely remain the modality of choice in diagnostic workup and patient followup after therapy.

Yet, a strong case can be made for routine use of MR spectroscopy in oncology, if for no other reasons than the convenience of the provider and better service to the patient. Virtually every oncology patient has at least one MR exam. With the right software and hardware in place, adding a six-minute sequence to the standard brain exam provides baseline numbers from healthy neighboring tissue while another six-minute sequence plumbs the nearby lesion, producing spectra that in many cases can distinguish healthy from malignant tissue.

Granted, these spectra will not supplant a needle biopsy. And the extra time and effort will not be reimbursed. Consequently, any additional costs to upgrade the scanner to support spectroscopy may be tough to justify. But this justification does not have to come from the need to generate revenue so much as to ensure its source. We are at a time when the value that radiology brings to medicine is being questioned. Tiny ultrasound scanners peek out from the shirt pockets of general practitioners; a 1980s rock band promotes digital radiography on a music video; CT scanners capable of every major radiological exam are going for well under a million dollars.

By contrast, MR spectroscopy remains firmly rooted in radiology. It’s fast. It’s relatively easy to understand – although its results take time to grasp. And its use demonstrates the commitment of radiologists to patient welfare, supplanting conventional thought, which is to judge therapeutic success on the basis of whether a lesion has grown or shrunk. The hard numbers derived from MRS could help determine whether a patient is responding just days after the start of therapy. Compare this instantaneity to the weeks or months that must pass before tumor growth or shrinkage is evident.

MR spectroscopy is the ultimate hybrid imaging technology, delivering both anatomical and functional imaging in a single exam. As such, it may not only be the most underplayed card in imaging’s deck, it could be trump.

Related Content

Videos | SPECT-CT | December 12, 2018
This is a walk around of the new Spectrum Dynamics Veriton SPECT-CT nuclear imaging system introduced at the 2018 ...
Spectrum Dynamics Sues GE for Theft, Misappropriation of Trade Secrets and Unfair Competition
News | SPECT Imaging | December 06, 2018
Single-photon emission computed tomography (SPECT) cardiac imaging company Spectrum Dynamics filed a lawsuit Dec. 6,...
Subtle Medical Receives FDA Clearance, CE Mark for SubtlePET
Technology | PET Imaging | December 05, 2018
Subtle Medical announced 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market SubtlePET. Subtle...
Mirada Medical Joins U.K. Consortium Exploring Healthcare AI
News | Artificial Intelligence | December 04, 2018
Mirada Medical, a leading global brand in medical imaging software, will form part of an artificial intelligence (AI)...
Siemens Healthineers Showcases syngo Virtual Cockpit for More Flexible Workforce Management
News | Teleradiology | November 25, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...
GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...