Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | October 20, 2011

Toward a Better, Gentler Way to Image Breast Cancer

Minimizing X-ray dose has driven the global imaging community to develop technologies that today can cut patient dose from computed tomography (CT) to a fraction of its previous levels.  So it may soon be in mammography.

Earlier this year, the U.S. Food & Drug Administration (FDA) granted permission for Hologic to sell its Selenia Dimensions, a machine that through its ability to perform tomosynthesis offers mammographers a chance to see what otherwise might be hidden. Multiple X-ray exposures at varying angles promise to expose lesions obscured by overlying tissues and increase diagnostic certainty.

Unfortunately, to achieve the full potential of this technology, the tomo scan must be read in the context of a 2-D mammogram. This requires two exams, doubling the patient’s dose of radiation. While little has been said so far about this, just as it was for CT, dose could become an issue for tomosynthesis, giving pause to some whose patients might otherwise benefit from tomo. But work is already underway to create an arsenal of silver bullets.

Researchers at the University of Pittsburgh hope to craft one such a bullet against dose, an algorithmic one in the shape of a “synthetic  full-field digital mammography (FFDM)." The goal is to synthesize data for a 2-D image from those obtained during the tomo scan, thus sparing the patient from a second exposure to radiation. If successful, the tomo exam would capture all the data mammographers need. 

Promising to improve tomo further is a nanotechnology that could increase scan speed by a factor of 10, boosting spatial resolution and opening the door to dual-energy scanning, potentially providing better contrast and, in the process, reducing radiation dose. This technology would replace the moving X-ray source in tomo with a stationary one, called multi-pixel field emission X-ray, which is based on microscopic carbon nanotubes. The feasibility of doing so has already been demonstrated and a fully functional system is in development at a company called XinRay Systems, a joint venture between Siemens and a small North Carolina startup called Xintek.

On the detector side, at the State University of New York in Stony Brook, researchers are working on a new amorphous selenium detector that could double the detective quantum efficiency (a measure of X-ray detector performance), boosting resolution far beyond what is currently possible and, potentially reducing dose.

With its volumetric data sets providing different angles on suspicious lesions, today’s breast tomosynthesis is hard to argue against.  Tomorrow it may be even more so, as the evolution of this technology renders issues about dose less and less of an issue.

Related Content

Infervision's newly FDA approved CT lung AI application sets a new standard
News | Artificial Intelligence | July 10, 2020
July 10, 2020 — Infervision announced U.S.
Artificial intelligence (AI)-assisted software was used to identify inflammatory tissues in lung and automatically segment inflammatory lesions. Three-dimensional image shows regions of COVID-19 pneumonia in lung through AI postprocessing. Image courtesy of the American Journal of Roentgenology (AJR)

Artificial intelligence (AI)-assisted software was used to identify inflammatory tissues in lung and automatically segment inflammatory lesions. Three-dimensional image shows regions of COVID-19 pneumonia in lung through AI postprocessing. Image courtesy of the American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | July 10, 2020
July 10, 2020 — An open-access Ameri
A lung CT of a COVID-19 patient, showing ground-glass opacities in the lung from COVID pneumonia. Image courtesy of John Kim.

A lung CT of a COVID-19 patient, showing ground-glass opacities in the lung from COVID pneumonia. Image courtesy of John Kim.

News | Coronavirus (COVID-19) | July 09, 2020
July 9, 2020 — With increased lung CT exam paradigms being used in the current...
Simulation finds starting at age 30 with MRI and mammography to be the preferred strategy; starting at 25 prevented marginally more deaths, but with more testing and emotional stress

Getty Images

News | Breast Imaging | July 09, 2020
July 9, 2020 — Chest radiation is used to treat children with Hodgkin and non-Hodgkin lymphoma as well as lung metast
Hologic, Inc. announced he U.S. launch of the SuperSonic MACH 40 ultrasound system, expanding the company’s suite of ultrasound technologies with its first premium, cart-based system.
News | Breast Imaging | July 08, 2020
July 8, 2020 — Hologic, Inc. announced he U.S.
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for
In new QuickPoLL survey on imaging during the pandemic, responses were tallied from around 170 radiology administrators and business managers, who are part of an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business. TMTG is a research firm specializing in the medical device, healthcare and pharmaceutical industries.
Feature | Coronavirus (COVID-19) | June 30, 2020 | By Melinda Taschetta-Millane
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit