Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | October 20, 2011

Toward a Better, Gentler Way to Image Breast Cancer

Minimizing X-ray dose has driven the global imaging community to develop technologies that today can cut patient dose from computed tomography (CT) to a fraction of its previous levels.  So it may soon be in mammography.

Earlier this year, the U.S. Food & Drug Administration (FDA) granted permission for Hologic to sell its Selenia Dimensions, a machine that through its ability to perform tomosynthesis offers mammographers a chance to see what otherwise might be hidden. Multiple X-ray exposures at varying angles promise to expose lesions obscured by overlying tissues and increase diagnostic certainty.

Unfortunately, to achieve the full potential of this technology, the tomo scan must be read in the context of a 2-D mammogram. This requires two exams, doubling the patient’s dose of radiation. While little has been said so far about this, just as it was for CT, dose could become an issue for tomosynthesis, giving pause to some whose patients might otherwise benefit from tomo. But work is already underway to create an arsenal of silver bullets.

Researchers at the University of Pittsburgh hope to craft one such a bullet against dose, an algorithmic one in the shape of a “synthetic  full-field digital mammography (FFDM)." The goal is to synthesize data for a 2-D image from those obtained during the tomo scan, thus sparing the patient from a second exposure to radiation. If successful, the tomo exam would capture all the data mammographers need. 

Promising to improve tomo further is a nanotechnology that could increase scan speed by a factor of 10, boosting spatial resolution and opening the door to dual-energy scanning, potentially providing better contrast and, in the process, reducing radiation dose. This technology would replace the moving X-ray source in tomo with a stationary one, called multi-pixel field emission X-ray, which is based on microscopic carbon nanotubes. The feasibility of doing so has already been demonstrated and a fully functional system is in development at a company called XinRay Systems, a joint venture between Siemens and a small North Carolina startup called Xintek.

On the detector side, at the State University of New York in Stony Brook, researchers are working on a new amorphous selenium detector that could double the detective quantum efficiency (a measure of X-ray detector performance), boosting resolution far beyond what is currently possible and, potentially reducing dose.

With its volumetric data sets providing different angles on suspicious lesions, today’s breast tomosynthesis is hard to argue against.  Tomorrow it may be even more so, as the evolution of this technology renders issues about dose less and less of an issue.

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Four Blue Cross Blue Shield Companies Issue Positive Medical Policies on HeartFlow FFRct Analysis
News | Computed Tomography (CT) | August 09, 2017
HeartFlow Inc. announced that four Blue Cross Blue Shield companies have each issued a positive medical policy for the...
Clinical Data Supports Use of Xoft System for Endometrial Cancer
News | Brachytherapy Systems | August 03, 2017
Researchers presented clinical data supporting use of the Xoft Axxent Electronic Brachytherapy (eBx) System for the...
The American Lung Association created LUNG FORCE, a national movement to defeat lung cancer
News | Lung Cancer | August 02, 2017
To raise public awareness of lung cancer—the leading cancer killer of men and women—the American Lung Association's...
The ASPIRE Cristalle FFDM system with DBT combines Fujifilm’s state-of-the-art hexagonal close pattern (HCP) detector design, advanced image processing and image acquisition workflow
News | Women's Health | August 01, 2017
Fujifilm Medical Systems U.S.A., Inc. announced that The Mammography Center of Monterey, an ACR-accredited breast...
GE’s DoseWatch is a digital informatics solution that automatically collects, monitors and reports on radiation dose indices for diagnostic imaging exams
News | Radiation Dose Management | July 31, 2017
GE Healthcare announced that it has licensed computed tomography (CT) organ dosimetry technology developed at Duke...
Sponsored Content | Videos | Breast Imaging | July 28, 2017
Nancy Cappello, Ph.D., executive director and founder of Are You Dense Inc. and Are You Dense Advocacy, explains how
Contrast Media from Bayer, trends in contrast media and developments in contrast media
Feature | Contrast Media | July 28, 2017 | By Dave Fornell
Here are several updates in medical imaging ...
New York Hospital Finds Significant Cost Savings With Toshiba’s Aquilion One CT
News | Computed Tomography (CT) | July 25, 2017
In five years, Kaleida Health’s Stroke Care Center (SCC) at the Gates Vascular Institute in Buffalo, N.Y., has realized...
Radiotherapy Prior to Surgery Reduces Secondary Tumor Risk in Early-Stage Breast Cancer Patients
News | Radiation Therapy | July 24, 2017
Moffitt Cancer Center researchers launched a first-of-its-kind study comparing the long-term benefits of radiation...
Overlay Init