Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | July 21, 2011

Positron Imaging and the Future of Radiology

Wielding an assortment of high-energy photons, ultrasonic waves and radiofrequencies, radiology has made a practice of peeling back virtual tissue to guide the management of patients. Positron emission tomography (PET) is the ultimate expression of this and an example of what radiology must do to succeed.

With PET you can see cellular function to differentiate healthy from cancerous cells; determine the viability of heart tissue; document if a drug is having the desired effect.

No, it’s not perfect. Its hybridization with computed tomography (CT) attests to this. PET’s recent alliance with magnetic resonance (MR) underscores its shortcomings. But it also reveals PET’s strengths. The ability to hybridize, to overcome weakness, makes it an example of what radiology must become in the future.

By design, PET combines with best-of-breed technologies to go beyond the state-of-the-art; the whole becoming greater than the sum of the parts; one part stepping in to capitalize on specific opportunities.

Pundits believe PET/CT will remain the procedure of choice for staging and following up cancers well characterized by CT. It will likely continue as the best way to monitor patient response to some treatments.  But PET/MR is being suggested for cases where MR is inherently better than CT. Already the groundwork for future clinical applications is taking shape, buoyed by peer-reviewed research done on prototypes.

• PET/MR may be more sensitive than PET/CT at detecting liver metastases. (Donati OF, Hany TF, Reiner CS, et.al. Value of retrospective fusion of PET and MR images in detection of hepatic metastases: comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI. J Nucl Med. 2010 May; 51(5):692-9. Epub 2010 Apr 15.)

• The ability of MRI to visualize the hemodynamics of gliomas combined with PET’s ability to interrogate glioma physiology could provide an early indicator of tumor response to therapy, particularly when antiangiogenic agents are involved. (Gerstner ER, Sorensen AG, Jain RK, et.al. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability and angiogenesis in gliomas, Curr Opin Neurol. 2008 Dec; 21(6):728-35.)

• Diffusion tensor imaging with simultaneous PET may help in the treatment planning of patients with brain tumors. (Boss A, Kolb A, Hofmann M, et.al. Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol. 2010 May; 45(5):270-4.)

A year ago, disruptions in the supply of technetium, the backbone of single photon emission computed tomography (SPECT), had undercut conventional nuclear medicine, causing some to promote PET/CT in its place, if for no other reason than the certainty of its radioisotope supply. Suddenly, with the unveiling at RSNA 2010 by Siemens and Philips of integrated PET/MR scanners, the equation changed. Now the advocates of PET talk about teaming with MR in cardiovascular imaging to go beyond what can be achieved with conventional nuclear cardiology, citing published research that shows combining PET and cardiac MR might enable the detection and differentiation of vulnerable plaques in the coronaries.  (Pichler BJ , Kolb A , Nägele T, PET/MRI: Paving the Way for the Next Generation of Clinical Multimodality Imaging Applications. J Nucl Med 2010 March 51(3) 333-336.)

It is this potential to recombine, adapt and overcome challenges and, thereby,  go beyond current capabilities that spurs the optimism of PET advocates. The evaluation of degenerative diseases, infections, inflammation and metabolic diseases are among the possibilities that lie ahead for PET – and illuminate the future of radiology.

Related Content

GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...
MEDraysintell Projects Increasing Mergers and Acquisitions in Nuclear Medicine
News | Nuclear Imaging | November 07, 2018
With the recent announcement by Novartis to acquire Endocyte , interest from the conventional pharmaceutical industry...
Feature | PET Imaging | November 07, 2018 | By Greg Freiherr
Positron emission tomography (PET) is getting ready to venture outside oncology, cardiology and mainstream neurology....
Podcast | PET Imaging | November 07, 2018
PET is getting ready to venture outside oncology, cardiology and mainstream neurology.
A PET/CT head and neck cancer scan.

A PET/CT head and neck cancer scan.

Feature | Nuclear Imaging | November 05, 2018 | By Sabyasachi Ghosh
“Experimental validation implemented in real-life situations and not theoretical claims exaggerating small advantages