Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | July 21, 2011

Positron Imaging and the Future of Radiology

Wielding an assortment of high-energy photons, ultrasonic waves and radiofrequencies, radiology has made a practice of peeling back virtual tissue to guide the management of patients. Positron emission tomography (PET) is the ultimate expression of this and an example of what radiology must do to succeed.

With PET you can see cellular function to differentiate healthy from cancerous cells; determine the viability of heart tissue; document if a drug is having the desired effect.

No, it’s not perfect. Its hybridization with computed tomography (CT) attests to this. PET’s recent alliance with magnetic resonance (MR) underscores its shortcomings. But it also reveals PET’s strengths. The ability to hybridize, to overcome weakness, makes it an example of what radiology must become in the future.

By design, PET combines with best-of-breed technologies to go beyond the state-of-the-art; the whole becoming greater than the sum of the parts; one part stepping in to capitalize on specific opportunities.

Pundits believe PET/CT will remain the procedure of choice for staging and following up cancers well characterized by CT. It will likely continue as the best way to monitor patient response to some treatments.  But PET/MR is being suggested for cases where MR is inherently better than CT. Already the groundwork for future clinical applications is taking shape, buoyed by peer-reviewed research done on prototypes.

• PET/MR may be more sensitive than PET/CT at detecting liver metastases. (Donati OF, Hany TF, Reiner CS, et.al. Value of retrospective fusion of PET and MR images in detection of hepatic metastases: comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI. J Nucl Med. 2010 May; 51(5):692-9. Epub 2010 Apr 15.)

• The ability of MRI to visualize the hemodynamics of gliomas combined with PET’s ability to interrogate glioma physiology could provide an early indicator of tumor response to therapy, particularly when antiangiogenic agents are involved. (Gerstner ER, Sorensen AG, Jain RK, et.al. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability and angiogenesis in gliomas, Curr Opin Neurol. 2008 Dec; 21(6):728-35.)

• Diffusion tensor imaging with simultaneous PET may help in the treatment planning of patients with brain tumors. (Boss A, Kolb A, Hofmann M, et.al. Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol. 2010 May; 45(5):270-4.)

A year ago, disruptions in the supply of technetium, the backbone of single photon emission computed tomography (SPECT), had undercut conventional nuclear medicine, causing some to promote PET/CT in its place, if for no other reason than the certainty of its radioisotope supply. Suddenly, with the unveiling at RSNA 2010 by Siemens and Philips of integrated PET/MR scanners, the equation changed. Now the advocates of PET talk about teaming with MR in cardiovascular imaging to go beyond what can be achieved with conventional nuclear cardiology, citing published research that shows combining PET and cardiac MR might enable the detection and differentiation of vulnerable plaques in the coronaries.  (Pichler BJ , Kolb A , Nägele T, PET/MRI: Paving the Way for the Next Generation of Clinical Multimodality Imaging Applications. J Nucl Med 2010 March 51(3) 333-336.)

It is this potential to recombine, adapt and overcome challenges and, thereby,  go beyond current capabilities that spurs the optimism of PET advocates. The evaluation of degenerative diseases, infections, inflammation and metabolic diseases are among the possibilities that lie ahead for PET – and illuminate the future of radiology.

Related Content

New ASNC SPECT Imaging Guideline Addresses Advances in Myocardial Perfusion Imaging
News | SPECT Imaging | June 21, 2018
The American Society of Nuclear Cardiology (ASNC) has published an update to its 2010 guidelines for single photon...
FDA Clears New Imaging Functionalities for Biograph mCT PET/CT Systems
Technology | PET-CT | June 21, 2018
Siemens Healthineers will announce U.S. Food and Drug Administration (FDA) clearance of four new system features for...
PET/CT Changes Care for 59 Percent of Suspected Recurrent Prostate Cancer Cases
News | Prostate Cancer | June 13, 2018
A recently presented investigational clinical trial evaluated the impact of 18F fluciclovine positron emission...
Nuclear imaging scan showing very good tissue delineation. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Nuclear imaging scan showing very good tissue delineation. It offers crisp overall image quality and sharply delineates the muscle and fat planes, vertebral margins and end plates, billiary radicals, renal calyces, aortic wall and papillary muscles of the heart. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Technology | PET-CT | June 05, 2018
June 5, 2018 — The U.S.
Emerging Trends in Nuclear Medicine
Feature | Nuclear Imaging | June 04, 2018 | By Jeff Zagoudis
Nuclear imaging and its various modalities have long played an important role in the diagnosis and treatment of numer
News | Computed Tomography (CT) | May 21, 2018
The Istituto Oncologico Veneto (IOV) in Padua, Italy, has acquired MILabs’ latest-generation Versatile Emission...
PET Imaging Agent Could Provide Early Diagnosis of Rheumatoid Arthritis

Coronal 18F-FEDAC PET/CT section of a mouse with collagen-induced arthritis. (A) On day 23 and day 37, increased uptake is noted in the front and hind paws of this mouse with collagen-induced arthritis. (B) Predictive performance of day 23 18F-FEDAC uptake for the development of clinical arthritis. ROC = receiver operating characteristic; Sn = sensitivity; Sp = specificity. Credit: Seoul National University and Ewha Womans University, Seoul, South Korea

News | PET Imaging | May 17, 2018
A novel positron emission tomography (PET) tracer developed by Korean researchers can visualize joint inflammation and...
PET Imaging Shows Protein Clumping May Contribute to Heart Failure Development
News | PET Imaging | May 11, 2018
A team led by Johns Hopkins University Researchers has discovered that protein clumps appear to accumulate in the...
News | Radiopharmaceuticals and Tracers | May 09, 2018
Blue Earth Diagnostics signed an exclusive, worldwide agreement with Scintomics GmbH, Germany, a specialist in...
Overlay Init