Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Imaging| June 01, 2016

Screening: How New Looks at Old Modalities Might Turn Imaging Upside Down

screening, imaging

Graphic courtesy Pixabay

Cancer screening is the only circumstance in which apparently healthy people subject themselves purposely to an agent known to cause cancer. It is the paradox of mammography, a screening tool that has substantially reduced breast cancer morbidity, whose success has only added to its paradoxical nature.

While mammography may be the most recognizable type of screening, it is not the only one. Ultrasound is widely used to screen for cardiovascular disease, for example. But, unlike mammography, it does not rely on ionizing radiation. Nor does magnetic resonance imaging (MRI), an imaging tool deemed too expensive — and limited in scope — for use in screening. But that could change.

Consider GLINT (glucoCEST Imaging of Neoplastic Tumors) — an MR-based technique being developed to visualize the body’s use of glucose. GLINT imaging is based on the use by tumors of massive amounts of glucose. This concept underlies the ability of positron emission tomography (PET) to spot the presence and recurrence of tumors. But, whereas PET exposes patients to ionizing radiation through the use of glucose molecules tagged with positron-emitting fluorine (as well as the computed tomography (CT) with which it is commonly paired), GLINT records hot spots coming from the use of non-labeled glucose.

 

Too Early To Tell

In a May 24 press release announcing the GLINT program, Vienna-based European Institute for Biomedical Imaging Research (EIBIR) framed the technique as a “game changer for cancer screening.”

This possibility is as exciting, as it is speculative.

GLINT is only a few months old, its development having been formally launched in January this year. Its four-year development program, guided by EIBIR, involves major universities, research institutes and corporations in seven countries – one in Israel, the others in Europe.

GLINT is being groomed as an MR technique for finding disease. It may be especially useful against cancer. But also might be used for other diseases. It may be very inexpensive. (The GLINT project group claims that this technique might be six to ten times less expensive than current MR techniques.) But a need for glucose analogues could negate those savings.

Clearly, much about GLINT is up in the air. One thing is for sure, however. GLINT is not going to replace mammography any time soon. It may never do so, unless the technique can be developed for use on dedicated, low-cost screening devices. The capital investment underlying MRI is substantial, far more so than mammography or ultrasound.

Intriguing, however, is the metabolic basis of this technique, which promises to transform MRI from an anatomical modality into molecular imaging. The practical implications are huge. According to the project team, the development and commercialization of glucoCEST MRI will “benefit the global cancer population by improving the diagnostic accuracy of MRI and providing early readouts of treatment efficacy, leading to improved clinical decisions and outcomes.”

While economic considerations might blunt GLINT’s role in screening, they might work in its favor as a means to monitor patients for cancer recurrence following therapy. This would be especially so for pediatric patients who may be monitored using PET/CT and, consequently, exposed to ionizing radiation periodically during their formative years and long after. Notably, the research team is looking specifically at pediatric lymphomas, as well as squamous cell carcinoma and primary gliomas.

 

Much Potential, Little Proven

GLINT might be used on these and other cancers. Adding to its appeal is the possibility that GLINT might even be used to find diseases other than cancer, thanks to its ability to image proteins, according to Prof. Klaus Scheffler, Ph.D., of the Max Planck institute for Biological Cybernetics in Tübingen.

In the near term, multi-site research teams are concentrating on cancer and the detection of native glucose (D-glucose) uptake in tumors. They are also reportedly looking into glucose analogues, such as 3-oxy-methyl-D-glucose. Because methylated analogues of sugar cannot be metabolized, they might serve as tracers.

While such studies keep GLINT in the cancer wheelhouse, they raise questions about a basic premise underlying the development of this technique — its potential for low-cost exams. The use of such tracers would undoubtedly add to the expense.

Pushing such considerations aside is the exciting nature of GLINT — what its development signifies for the medical imaging community — that free thinkers are looking at an established modality not for what it is but for what it might be.

GLINT is the result of thinking outside the box, of asking “why not?” This begs the question: What other wonders of medical imaging might be similarly unlocked if the status quo is challenged?

 

Editor's note: This is the first blog in a four-part series on screening

Related Content

Toshiba, Aplio i-series, MSK, musculoskeletal ultrasound, RSNA 2017
Technology | Ultrasound Imaging | March 29, 2017
March 29, 2017 — Toshiba Medical recently announced the launch of its new premium Aplio i-series...
News | Radiopharmaceuticals and Tracers | March 29, 2017
Advanced Accelerator Applications S.A. announced that its product NETSPOT (gallium Ga-68 dotatate) has been included in...
lung cancer recurrence, biomarker blood test, CT scans, 2017 Multidisciplinary Thoracic Cancers Symposium, clinical study
News | Lung Cancer | March 28, 2017
Results from a prospective clinical trial showed a blood test looking at specific biomarkers was able to detect lung...
prenatal ultrasound, decreased bone density, rabbit study, Pertanika Journal of Science & Technology
News | Ultrasound Imaging | March 28, 2017
March 28, 2017 — Young rabbits exposed to...
iCAD, PowerLook Tomo Detection, computer-aided detection software, CAD, digital breast tomosynthesis, DBT, RSNA 2017
Technology | Computer-Aided Detection Software | March 27, 2017
March 27, 2017 — iCAD announced that PowerLook Tomo Detection received Premarket Approval (PMA) from the U.S.
Technology | Colonoscopy Systems | March 27, 2017
March 27, 2017 — Bracco Diagnostics Inc. announced the launch of its PROTOCO2L TOUCH Colon Insufflator.
Medsquare, VirtualDose CT module, organ dose calculation, DACS Radiation Dose Monitor, RDM
Technology | Radiation Dose Management | March 24, 2017
Medsquare announced the integration of the organ dose module VirtualDose CT into its DACS (dose archive and...
GE Healthcare, Senographe Pristina mammography system, launch, RSNA 2017, patient comfort
News | Mammography | March 24, 2017
GE Healthcare announced the launch of its new Senographe Pristina mammography system, designed to make breast screening...
Carestream, 2017 NFL Scouting Combine, digital X-ray, cone beam CT, CBCT
News | Digital Radiography (DR) | March 23, 2017
Carestream announced that it provided a DRX Plus 3543 digital X-ray detector for the 2017 National Football League (NFL...
ContextVision, 3-D ultrasound, SkeletalView, patent, fetal skeleton viewing, RSNA 2017
News | Advanced Visualization | March 23, 2017
ContextVision recently received a patent approval on a new skeletal visualization technology for 3-D ultrasound.
Overlay Init