Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Radiology Imaging | June 01, 2016

Screening: How New Looks at Old Modalities Might Turn Imaging Upside Down

screening, imaging

Graphic courtesy Pixabay

Cancer screening is the only circumstance in which apparently healthy people subject themselves purposely to an agent known to cause cancer. It is the paradox of mammography, a screening tool that has substantially reduced breast cancer morbidity, whose success has only added to its paradoxical nature.

While mammography may be the most recognizable type of screening, it is not the only one. Ultrasound is widely used to screen for cardiovascular disease, for example. But, unlike mammography, it does not rely on ionizing radiation. Nor does magnetic resonance imaging (MRI), an imaging tool deemed too expensive — and limited in scope — for use in screening. But that could change.

Consider GLINT (glucoCEST Imaging of Neoplastic Tumors) — an MR-based technique being developed to visualize the body’s use of glucose. GLINT imaging is based on the use by tumors of massive amounts of glucose. This concept underlies the ability of positron emission tomography (PET) to spot the presence and recurrence of tumors. But, whereas PET exposes patients to ionizing radiation through the use of glucose molecules tagged with positron-emitting fluorine (as well as the computed tomography (CT) with which it is commonly paired), GLINT records hot spots coming from the use of non-labeled glucose.

 

Too Early To Tell

In a May 24 press release announcing the GLINT program, Vienna-based European Institute for Biomedical Imaging Research (EIBIR) framed the technique as a “game changer for cancer screening.”

This possibility is as exciting, as it is speculative.

GLINT is only a few months old, its development having been formally launched in January this year. Its four-year development program, guided by EIBIR, involves major universities, research institutes and corporations in seven countries – one in Israel, the others in Europe.

GLINT is being groomed as an MR technique for finding disease. It may be especially useful against cancer. But also might be used for other diseases. It may be very inexpensive. (The GLINT project group claims that this technique might be six to ten times less expensive than current MR techniques.) But a need for glucose analogues could negate those savings.

Clearly, much about GLINT is up in the air. One thing is for sure, however. GLINT is not going to replace mammography any time soon. It may never do so, unless the technique can be developed for use on dedicated, low-cost screening devices. The capital investment underlying MRI is substantial, far more so than mammography or ultrasound.

Intriguing, however, is the metabolic basis of this technique, which promises to transform MRI from an anatomical modality into molecular imaging. The practical implications are huge. According to the project team, the development and commercialization of glucoCEST MRI will “benefit the global cancer population by improving the diagnostic accuracy of MRI and providing early readouts of treatment efficacy, leading to improved clinical decisions and outcomes.”

While economic considerations might blunt GLINT’s role in screening, they might work in its favor as a means to monitor patients for cancer recurrence following therapy. This would be especially so for pediatric patients who may be monitored using PET/CT and, consequently, exposed to ionizing radiation periodically during their formative years and long after. Notably, the research team is looking specifically at pediatric lymphomas, as well as squamous cell carcinoma and primary gliomas.

 

Much Potential, Little Proven

GLINT might be used on these and other cancers. Adding to its appeal is the possibility that GLINT might even be used to find diseases other than cancer, thanks to its ability to image proteins, according to Prof. Klaus Scheffler, Ph.D., of the Max Planck institute for Biological Cybernetics in Tübingen.

In the near term, multi-site research teams are concentrating on cancer and the detection of native glucose (D-glucose) uptake in tumors. They are also reportedly looking into glucose analogues, such as 3-oxy-methyl-D-glucose. Because methylated analogues of sugar cannot be metabolized, they might serve as tracers.

While such studies keep GLINT in the cancer wheelhouse, they raise questions about a basic premise underlying the development of this technique — its potential for low-cost exams. The use of such tracers would undoubtedly add to the expense.

Pushing such considerations aside is the exciting nature of GLINT — what its development signifies for the medical imaging community — that free thinkers are looking at an established modality not for what it is but for what it might be.

GLINT is the result of thinking outside the box, of asking “why not?” This begs the question: What other wonders of medical imaging might be similarly unlocked if the status quo is challenged?

 

Editor's note: This is the first blog in a four-part series on screening

Related Content

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

News | Magnetic Resonance Imaging (MRI) | July 02, 2020
July 2, 2020 — Axonics Modulation Technologies, Inc., a medical technology company that has developed and is commerci
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for
Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

News | Pediatric Imaging | June 29, 2020
June 29, 2020 — A type of smart magnetic r...
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
The American College of Radiology (ACR) Center for Research and Innovation (CRI) is pleased to announce the development of the COVID-19 Imaging Research Registry (CIRR), an effort by the ACR CRI and the ACR Data Science Institute in collaboration with the ACR and the Society of Thoracic Radiology (STR). Sharyn Katz, M.D., director of research for thoracic radiology at the University of Pennsylvania, chairs the effort’s multiple-disciplinary steering committee, which includes representation from across the i

Getty Images

News | Coronavirus (COVID-19) | June 25, 2020
June 25, 2020 — The American College of Radiology (ACR) Center for R