Feature | Radiology Imaging | July 06, 2016 | Greg Freiherr

Personalization in the Age of Value Medicine

personalized medicine

Mammography may be the most recognizable — and singularly effective — type of personalized medicine, benefitting from digital developments that have taken shape over the past 16 years. Recently published literature attributes a reduction in breast cancer deaths up to 28 percent.1 Yet mammography is not the only way to personalize medicine. And it certainly is not the only one that can benefit from the development of advanced technologies. 

As we prepare to enter the age of value medicine, with its implicit reliance on increasingly personalized approaches, new developments and consequent improvement of diagnostic and therapeutic techniques demand innovation. What wonders of medical imaging might be unlocked if the status quo is challenged?

One such challenge only now beginning to take shape is GLINT (glucoCEST imaging of neoplastic tumors), a magnetic resonance (MR) based technique being developed to visualize the body’s use of glucose. It’s too early to tell whether this new technology can be effectively applied to cancer screening. It is only a few months old, its development having been formally announced earlier this year. But one thing is for sure, the approach is relevant to personalized healthcare. 

GLINT imaging is based on the use by tumors of massive amounts of glucose. This concept underlies the ability of positron emission tomography (PET) to spot the presence and recurrence of tumors. But, whereas PET exposes patients to ionizing radiation through the use of glucose molecules tagged with positron-emitting fluorine (as well as the computed tomography (CT) with which it is commonly paired), GLINT records hot spots coming from the use of non-labeled glucose.

At the very least, the molecular imaging aspect of GLINT raises the potential for its use in a concerted effort against cancer. Therein lies the true potential of medical imaging in the future, and specifically its role in personalized medicine.

Beyond Medicine’s Grasp

The realization of personalized healthcare has been elusive. A decade ago it appeared near at hand with the sequencing of the human genome, which was supposed to provide a blueprint for how to make diagnostic and therapeutic medicine more exact. When that didn’t pan out, the concept of personalized medicine was redefined as healthcare tailored to the individual by whatever means could be found.

Just as mammography has proven useful in women’s health, so might the development of effective tests for diagnosing and monitoring prostate cancer be useful in men’s health. A large American study has found that screening for prostate cancer has not reduced the chance of dying from the disease.2 

The means for impacting morbidity from this disease is badly needed. According to the U.S. government, prostate cancer is the most common non-skin cancer and the second leading cause of cancer-related death in men in the United States. It was estimated that, in 2014, 233,000 men in the U.S. would be diagnosed with prostate cancer. Nearly 29,500 would die of the disease. 

Prostate Screening Potential 

This bleak picture exists despite the many technologies that are being leveled against this cancer, technologies that include blood tests for prostate specific antigen (PSA),
ultrasound and ultrasound-guided biopsy.

Lately an advanced form of prostate MR has been commercialized, one that is noninvasive thanks to a surface coil that streamlines patient set-up and accelerates scans. Adding to the future potential of prostate assessment are several PET radiotracers that show promise for identifying prostate cancer, metastatic spread and relapse. Notably new opportunities are also arising in SPECT, just as research has determined that blood, tissue and urine samples may contain better biomarkers than PSA.

In the end, however, improved healthcare will come down to more than hard work and possibilities. It will depend on evidence indicating the specific utility of new technologies.

This evidence might be obtained through data mining, a capability that promises to quantify experience, offering objective evidence to support the development and use of new and advanced technologies. Data mining could expand substantially once enterprise imaging takes hold and the data collected about patients expands.

Clearly, then, the potential of personalized medicine cannot be achieved through a single magic bullet but through a bombardment of such bullets, all precisely aimed so as to bring practitioners closer to the truth about disease as it affects the individual — and the therapy that will precisely impact it. 

 

Additional reading:

1. Weedon-Fekjær H, Romundstad PR, et al. Modern mammography screening and breast cancer mortality: population study. BMJ 2014; 348

2. Andriole GL, Crawford ED, et al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J National Cancer Institute 2012; 104:125

 

Editor’s note: This column is the culmination of a series of four blogs by industry consultant Greg Freiherr on screening. The blogs, “Screening: How New Looks at Old Modalities Might Turn Imaging Upside Down,” “Why Developing Multiple Screening Technologies is a Must,” “How the Trump Candidacy Might
Energize Men’s Healthcare” and “How Data Mining Can Personalize the Practice of Medicine” can be found at
www.itnonline.com/content/screening.

Related Content

Artificial intelligence, also called deep learning and machine learning, was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting.

Artificial intelligence was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting, which included a large area with its own presentation therater set asside for AI vendors.

Feature | Artificial Intelligence | January 10, 2019 | Dave Fornell, Editor
Hands down, the hottest topic in radiology the past two years has been the implementation of...
3-D Reconstruction of Ichthyosaurus Skull

A 3-D reconstruction of the ichthyosaurus skull from a computed tomography (CT) scan. Image courtesy of Nigel Larkin, taken at Royal Veterinary College, London.

News | Computed Tomography (CT) | January 09, 2019
A nearly meter-long skull of a giant fossil marine ichthyosaur found in a farmer's field more than 60 years ago has...
SCCT Releases New Guideline for CT Use During TAVR
News | Computed Tomography (CT) | January 08, 2019
The Society of Cardiovascular Computed Tomography (SCCT) has released a new expert consensus document for computed...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...
CT Technique Expands Possibilities of Imaging Ancient Remains
News | Computed Tomography (CT) | December 27, 2018
Researchers in Sweden using computed tomography (CT) have successfully imaged the soft tissue of an ancient Egyptian...
Canon Aquilion One CT Helps Gates Vascular Institute Adhere to New Stroke Guidelines
News | Computed Tomography (CT) | December 12, 2018
In stroke, time saved on imaging is time gained in the treatment window. The recently updated guidelines from the...
Coreline Soft Introduces AI Lung Segmentation Solution at RSNA 2018
News | Lung Cancer | December 10, 2018
December 10, 2018 — Korean image software company Coreline Soft Co. Ltd.
FDA Approves New Features for Planmed Verity Cone Beam CT Scanner
Technology | Computed Tomography (CT) | December 07, 2018
The U.S. Food and Drug Administration (FDA) issued an approval letter for the new features and intended uses of the...
YITU Releases AI-Based Cancer Screening Solutions at RSNA 2018
News | Artificial Intelligence | December 06, 2018
Chinese artificial intelligence (AI) healthcare company YITU healthcare released two brand-new products, Intelligent...
Guerbet Launches Multi-Use OptiVantage Contrast Media Injector in Europe
Technology | Contrast Media Injectors | December 05, 2018
Contrast agent company Guerbet recently announced that the OptiVantage multi-use contrast media injector is now CE...