Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Sponsored Content | Blog | Greg Freiherr, Industry Consultant | PET Imaging | December 11, 2018

Digital Technology Pushes PET In New and Old Directions

A 90-second brain acquisition with FDG radiotracer — comparison of digital (Vereos, left, 1 mm) and conventional (Gemini TF, 4 mm) images.

A 90-second brain acquisition with FDG radiotracer — comparison of digital (Vereos, left, 1 mm) and conventional (Gemini TF, 4 mm) images.

Digital technology is opening remarkable opportunities for clinical positron emission tomography (PET) about which research is only beginning to hint.

“Twenty years ago we were excited that we could see a lesion. Now we want to understand its underlying biologic heterogeneity,” said Michael Knopp, M.D., a radiology professor at Ohio State University whose research with Philips’ digital PET/CT, called Vereos, is exploring applications within and beyond traditional clinical areas.

The digital technology underlying Vereos can provide the details that may escape analog systems, said Piotr Maniawski, director of clinical science for nuclear medicine at Philips Healthcare. Visualization using 4 mm cubes, which are typically delivered by analog systems, makes small lesions look spherical, he said. The very small voxels in digital images better visualize shapes and texture.

“Seeing if the texture is changing helps characterize the lesion,” said the Philips clinical director. The metabolism inside the lesion, he said, may be much different, depending on the location.

In a paper published May 2017 in the journal Contrast Media and Molecular Imaging, Knopp, who is the Novartis chair of Imaging Research at Ohio State University, and colleagues at Ohio State summarized how digital PET enables advanced functional tumor imaging.

 

A Digital Twist

Much like radiography began, PET started as an analog modality. Instead of film, PET relied on photomultiplier tubes (PMTs). In analog systems, light generated by a single scintillating crystal is channeled to multiple PMTs. In Vereos, light generated by a single scintillating crystal is channeled to its own detector.

Vereos’ digital detection is built on digital photon counting (DPC) technology, whereby crystals and sensors are coupled “one-to-one,” said Maniawski, who has worked with Knopp and others to assess the clinical capabilities conferred by Vereos’ digital technology. Light flashes produced by specific crystals are channeled directly to individual digital sensors. In stark contrast to analog technology, which accumulates signals from light flashes in analog detectors until reaching trigger points, “there is no light sharing,” Maniawski said. “The moment the detector registers this light, we know precisely which crystal produced it.”

Reconstruction algorithms onboard Vereos mathematically reconstruct digital PET into detailed images. These appear “more rich and precise” than those made using analog-based PET systems, Knopp said, due to the increased density of the data. The OSU researcher likened the benefit of data density to the improvement of smartphone images as those pictures gain more data density.

“When you pull up Google maps, the picture might look fuzzy at first and then as the data come in, it will look sharp and brilliant,” Knopp said. “This happens because the data density changes.”

Maniawski explained that voxels in Vereos images are densified with data collected by the 23,000 solid-state sensors from individual scintillation events. This added data density allows Vereos to package data into voxel volumes of 2 mm — or even 1 mm — cubes. This data density gives shape and texture to structures in the images.

 

Bringing Together Old and New

The game-changing appearance of Vereos’ images can be challenging, Knopp noted.

Because digital images show more detail, they may show lesions and features that might not be seen with analog technology. When comparing current digital images to past analog ones, the question arises: Were lesions now visible not seen previously because the technology could not see them? Or have they just recently occurred?

The answers to these questions can directly impact the management of patients being monitored for disease recurrence.

To deal with this incompatibility, Philips offers a feature in Vereos that reconstructs digital data as if they were acquired on an analog system. This is done with reconstruction algorithms, Maniawski said. These algorithms harmonize the digital data.

Vereos users who choose this option “end up with two images from the same data — a conventional looking image and a digital one,” Maniawski said.

Vereos can create a still picture and visualize changes over time. In the mid- to late-1980s, early developers of PET often acquired data dynamically. Serial acquisitions came into vogue when PET/CT imaging entered the mainstream. But dynamic imaging, similar to short video clips, can provide clinical information not found in static images.

Editor’s Note: This is the fifth in a series of blogs on the advances of digital PET/CT. The first is entitled How Digital PET/CT Can Improve Clinical Care; the second Why – And How – Digital PET Is Better Than Analog; the third Digital PET Balances Scan Time and Resolution; the fourth What Precision Means To PET

 

Related Content:

SPECIAL SUPPLEMENT: Examining the Value of Digital PET/CT

Related Content

Registration is now open for the Radiological Society of North America (RSNA) 107th Scientific Assembly and Annual Meeting, the world’s largest annual radiology forum, to be held at McCormick Place Chicago, Nov. 28 – Dec. 2, 2021

Getty Images

News | RSNA | July 21, 2021
July 21, 2021 — Registration is now open for the Radiological Society of North America (...

Positrigo founders Max Ahnen, Ph.D. (left) and Jannis Fischer, Ph.D.

News | PET Imaging | July 16, 2021
A performance evaluation of the uEXPLORER total-body PET/CT scanner showed that it exhibits ultra-high sensitivity that supports excellent spatial resolution and image quality. Given the long axial field of view (AFOV) of the uEXPLORER, study authors have proposed new, extended measurements for phantoms to characterize total-body PET imaging more appropriately. This research was published in the June issue of The Journal of Nuclear Medicine.

Human imaging examples of performance of uEXPLORER total-body PET scanner. (A) Axial slice from 18F-fluciclovine PET image (right), with corresponding fused image (middle) and CT image (left), of 68-y-old patient with castration-resistant metastatic prostate cancer, demonstrating clear visualization of 18F-flucicovine accumulation within 2.5-mm-diameter pulmonary nodule. (B) Maximum-intensity projection of representative clinical oncology 18F-FDG PET scan reconstructed with 20-, 5-, and 2.5-min durations, of 59-y-old patient with lung cancer. Images show primary tumor in left lower lobe of lung (dashed circle), with multiple variable-sized (0.8-6 cm) hilar, mediastinal, and lower esophageal nodal metastases (arrows) and ~1-cm 18FFDG-avid left adrenal nodule (arrowhead), which is visualized for all scan durations. Image created by Y. Abdelhafez and B.A. Spencer, EXPLORER Molecular Imaging Center, UC Davis, Sacramento, CA

News | PET Imaging | July 10, 2021
July 10, 2021 — A performance evaluation of the uEXPLORER total-body PET/CT scanner showed that it exhibits ultra-hig
Aduhelm should be initiated in patients with mild cognitive impairment due to Alzheimer’s disease or mild Alzheimer’s dementia

Getty Images

News | PET Imaging | July 08, 2021
July 8, 2021 — Biogen and...
The U.S. Food and Drug Administration (FDA) approved a new imaging agent for detection of prostate cancer, providing a more effective imaging approach to detect the spread of cancer to other parts of the body. Piflufolastat F-18 injection is the first fluorinated prostate-specific membrane antigen (PSMA) agent approved by the FDA and also the first commercially available PSMA PET imaging agent.

Image courtesy of JNM

News | PET Imaging | June 28, 2021
June 28, 2021 — The U.S.
A phase III clinical trial has validated the effectiveness of the prostate-specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL in detecting and localizing recurrent prostate cancer.

Figure 1. Case example: A 54-year-old man with a history of RP+LND and a subsequent PSA of 1.25 ng/mL had no evidence of disease by baseline imaging. Piflufolastat F 18 (18F-DCFPyL)- PET/CT accurately detected biochemically recurrent prostate cancer with the PSMA PET/CT scan identifying positive left (left panel) and right peri-rectal lymph nodes (right panel).

News | Prostate Cancer | June 21, 2021
June 21, 2021 — A phase III clinica...
A novel positron emission tomography (PET) radiotracer has been shown to effectively measure increases in brain tau—a distinguishing characteristic of Alzheimer’s disease—before any symptoms of the disease are observed.

Figure 1. Tau accumulation over one year measured in composite A) mesial temporal ROI; and B) temporoparietal ROI in cognitively unimpaired participants (blue) and cognitively impaired participants (red). The CI group included participants with clinical mild cognitive impairment and dementia. Higher rates of tau accumulation were observed in participants on the AD continuum (CU Aβ+ve and CI Aβ+ve). Participants with the highest baseline tau and rates of tau accumulation were younger and more likely to be CI Aβ+ve. Image courtesy of SNMMI

News | PET Imaging | June 16, 2021
June 16, 2021 — A novel positron emission tomography (PET