Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | July 28, 2011

CardioGen Reveals Cardiac PET’s Soft Underbelly

Typically, the only radiation facing travelers is from the airport scanners they must walk through to board airplanes. Not so, however, for two travelers who set off radiation alarms when crossing the U.S. border earlier this month, an incident whose fallout threatens the future of cardiac PET.

Early this week the FDA warned U.S. healthcare providers to stop using the radioisotope generator commonly used to perform PET exams of the heart. Soon after Bracco Diagnostics, the maker of CardioGen-82, voluntarily recalled the cardiac generator (“FDA: Stop Using CardioGen-82 Due to Increased Radiation Exposure”).

An investigation by the FDA had found that CardioGen-82 had months earlier led to the dosing of the two travelers not only with rubidium-82,  the very short half-life isotope needed for their cardiac scans, but also with strontium, a much longer lived isotope. The inadvertent dosing, according to the FDA, was due to a failure in the manufacturing process called “strontium breakthrough.”

The resulting exposure of patients to excess radiation illustrates the vulnerability of imaging devices that depend on radioisotopes. Anyone familiar with nuclear cardiology, which depends heavily on the radioisotope technetium, understands how vulnerable these devices are.

An aging Canadian reactor with a distressingly long history of shutdowns supplies the molybdenum radioisotope that generate most of the technetium used in the U.S. for cardiac SPECT studies. When this reactor shut down, spurring a 15-month technetium shortage, PET advocates – led by Bracco Diagnostics – began recruiting nuclear cardiologists to switch from SPECT to PET. (“Time for a New Normal in Nuclear Cardiology?”). This alternative, they said, was not vulnerable to such shortages.  For those who were convinced, the recent news is not only ironic, but troubling.

In its warning to healthcare providers, the FDA noted that “the risk of harm from this exposure is minimal” and that “it would take much more radiation to cause any severe adverse health effects in patients.” (“CardioGen-82 PET Scan: Drug Safety Communication - Increased Radiation Exposure”)  Yet estimates derived from mathematical modeling done at the Los Alamos National Laboratory indicate that exposure for the two patients may be as high as 90 mSv – more than 30 times the normal dose of a cardiac PET scan. And it is not certain that these two patients are the only ones who have been so exposed. The FDA is now trying to find out how many, if any, more patients suffered excess radiation dose due to strontium breakthrough.

One question not being asked is why this unexpected exposure was detected at a U.S. border crossing instead of the PET suites where the scans were performed. Moreover, how could such excess doses occur in the first place? Are no tests required to ensure the purity of rubidium chloride before it is injected into patients?

Toward that end, the FDA is looking into the sufficiency of the testing procedures used to detect strontium breakthrough at clinical sites using CardioGen-82. Obviously, they are not sufficient, at least not everywhere. But they will have to be soon, or cardiac PET may have a tough time recovering from a shortage that should have never been.

Editor's note: For additional information about this incident and the product recall, visit www.cardiogen.com.

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
FDA Clears United Imaging Healthcare uExplorer Total-Body Scanner
Technology | PET-CT | January 23, 2019
January 23, 2019 — United Imaging Healthcare (United Imaging) announced U.S.
MIM Software Inc. Receives FDA 510(k) Clearance for Molecular Radiotherapy Dosimetry
Technology | Nuclear Imaging | January 16, 2019
MIM Software Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for molecular radiotherapy...
Videos | SPECT-CT | December 12, 2018
This is a walk around of the new Spectrum Dynamics Veriton SPECT-CT nuclear imaging system introduced at the 2018 ...