The impact of deploying artificial intelligence (AI) for radiation cancer therapy in a real-world clinical setting has been tested by Princess Margaret researchers in a unique study involving physicians and their patients.

Getty Images


June 15, 2021 — The impact of deploying artificial intelligence (AI) for radiation cancer therapy in a real-world clinical setting has been tested by Princess Margaret researchers in a unique study involving physicians and their patients.

A team of researchers directly compared physician evaluations of radiation treatments generated by an AI machine learning (ML) algorithm to conventional radiation treatments generated by humans.

They found that in the majority of the 100 patients studied, treatments generated using ML were deemed to be clinically acceptable for patient treatments by physicians.

Overall, 89% of ML-generated treatments were considered clinically acceptable for treatments, and 72% were selected over human-generated treatments in head-to-head comparisons to conventional human-generated treatments.

Moreover, the ML radiation treatment process was faster than the conventional human-driven process by 60%, reducing the overall time from 118 hours to 47 hours. In the long term this could represent a substantial cost savings through improved efficiency, while at the same time improving quality of clinical care, a rare win-win.

The study also has broader implications for AI in medicine.

While the ML treatments were overwhelmingly preferred when evaluated outside the clinical environment, as is done in most scientific works, physician preferences for the ML-generated treatments changed when the chosen treatment, ML or human-generated, would be used to treat the patient.

In that situation, the number of ML treatments selected for patient treatment was significantly reduced issuing a note of caution for teams considering deploying inadequately validated AI systems.

Results by the study team led by Drs. Chris McIntosh, Leigh Conroy, Ale Berlin, and Tom Purdie are published in Nature Medicine, June 3, 2021.

"We have shown that AI can be better than human judgement for curative-intent radiation therapy treatment. In fact, it is amazing that it works so well," said Chris McIntosh, Ph.D., Scientist at the Peter Munk Cardiac Centre, Techna Institute, and chair of Medical Imaging and AI at the Joint Department of Medical Imaging and University of Toronto.

"A major finding is what happens when you actually deploy it in a clinical setting in comparison to a simulated one."

Added Tom Purdie, Ph.D., Medical Physicist, Princess Margaret Cancer Centre: "There has been a lot of excitement generated by AI in the lab, and the assumption is that those results will translate directly to a clinical setting. But we sound a cautionary alert in our research that they may not.

"Once you put ML-generated treatments in the hands of people who are relying upon it to make real clinical decisions about their patients, that preference towards ML may drop. There can be a disconnect between what's happening in a lab-type of setting and a clinical one." Purdie is also an Associate Professor, Department of Radiation Oncology, University of Toronto.

In the study, treating radiation oncologists were asked to evaluate two different radiation treatments - either ML or human-generated ones - with the same standardized criteria in two groups of patients who were similar in demographics and disease characteristics.

The difference was that one group of patients had already received treatment so the comparison was a 'simulated' exercise. The second group of patients were about to begin radiation therapy treatment, so if AI-generated treatments were judged to be superior and preferable to their human counterparts, they would be used in the actual treatments.

Oncologists were not aware of which radiation treatment was designed by a human or a machine. Human-generated treatments were created individually for each patient as per normal protocol by the specialized Radiation Therapist. In contrast, each ML treatment was developed by a computer algorithm trained on a high-quality, peer-reviewed data base of radiation therapy plans from 99 patients previously treated for prostate cancer at Princess Margaret.

For each new patient, the ML algorithm automatically identifies the most similar patients in the data base, using learned similarity metrics from thousands of features from patient images, and delineated target and healthy organs that are a standard part of the radiation therapy treatment process. The complete treatment for a new patient is inferred from the most similar patients in the data base, according to the ML model.

Although ML-generated treatments were rated highly in both patient groups, the results in the pre-treatment group diverged from the post-treatment group.

In the group of patients that had already received treatment, the number of ML-generated treatments selected over human ones was 83%. This dropped to 61% for those selected specifically for treatment, prior to their treatment.

"In this study, we're saying researchers need to pay attention to a clinical setting," said Purdie. "If physicians feel that patient care is at stake, then that may influence their judgement, even though the ML treatments are thoroughly evaluated and validated."

Leigh Conroy, Ph.D., Medical Physicist at Princess Margaret, points out that following the highly successful study, ML-generated treatments are now used in treating the majority of prostate cancer patients at Princess Margaret.

That success is due to careful planning, judicious stepwise integration into the clinical environment, and involvement of many stakeholders throughout the process of establishing a robust ML program, she explains, adding that the program is constantly refined, oncologists are continuously consulted and give feedback, and the results of how well the ML treatments reflect clinical accuracy are shared with them.

"We were very systematic in how we integrated this into the clinic at Princess Margaret," said Ale Berlin, M.D., Clinician-Scientist and Radiation Oncologist at Princess Margaret. "To build this novel software, it took about six months, but to get everyone on board and comfortable with the process, it took more than two years. Vision, audacity and tenacity are key ingredients, and we are fortunate at Princess Margaret to have leaders across disciplines that embody these attributes." Berlin is also an Assistant Professor, Department of Radiation Oncology, University of Toronto.

The success for launching a study of this calibre relied heavily on the commitment from the entire genitourinary radiation cancer group at Princess Margaret, including radiation oncologists, medical physicists, and radiation therapists. This was a large multidisciplinary team effort with the ultimate goal for everyone to improve radiation cancer treatment for patients at Princess Margaret.

The team is also expanding their work to other cancer sites, including lung and beast cancer with the goal of reducing cardiotoxicity, a possible side effect of treatment.

For more information: www.uhn.on.ca


Related Content

News | Ultrasound Imaging

April 22, 2024 — GE HealthCare announced the launch of the Voluson Signature 20 and 18 ultrasound systems, which ...

Time April 22, 2024
arrow
News | Artificial Intelligence

April 19, 2024 — Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology ...

Time April 22, 2024
arrow
News | Radiation Therapy

April 18, 2024 — Accuray Incorporated announced that as part of its commitment to advancing patient care the company has ...

Time April 18, 2024
arrow
News | FDA

April 18, 2024 — Lumicell, Inc., a privately held company focused on developing innovative fluorescence-guided imaging ...

Time April 18, 2024
arrow
News | Lung Imaging

April 17, 2024 — A Medicare policy requiring primary care providers (PCPs) to share in the decision-making with patients ...

Time April 17, 2024
arrow
News | Radiology Business

April 17, 2024 — VISTA.AI announced the appointment of Daniel Hawkins as President and CEO. The company is pioneering AI ...

Time April 17, 2024
arrow
Videos | Breast Imaging

Don't miss ITN's latest "One on One" video interview with AAWR Past President and American College of Radiology (ACR) ...

Time April 15, 2024
arrow
News | Mammography

April 12, 2024 — Bayer and Hologic, Inc. announced a first-of-its-kind collaboration to deliver a coordinated solution ...

Time April 12, 2024
arrow
News | Mammography

April 12, 2024 — GE HealthCare, a leader in breast health technology and diagnostics, will feature its latest breast ...

Time April 12, 2024
arrow
News | Radiation Therapy

April 12, 2024 — RTsafe, a leading provider of quality assurance products and services in stereotactic radiosurgery, and ...

Time April 12, 2024
arrow
Subscribe Now