News | PET Imaging | April 05, 2017

Researchers hope results will lead to development of imaging biomarker to non-invasively identify mutation status and in turn allow more patient-specific treatment approaches

FDG-PET, cell mutations, lung cancer patients, non-small cell lung cancer, NSCLC, Journal of Nuclear Medicine study

From left to right are patients with EGFR mutation, KRAS mutation, and EGFR– and KRAS– tumors, respectively. Stage I and III tumors are shown in the top and bottom rows, respectively. Arrows indicate the locations of the lung tumors. Credit: Stephen S.F. Yip, Ph.D., and Hugo Aerts, Ph.D., Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston; John Kim, M.D., University of Michigan Health System, Ann Arbor, Mich.


April 5, 2017 — Researchers have used positron emission tomography (PET) to successfully identify genetic cell mutations that can cause lung cancer. The research, published in the featured article of the April 2017 issue of The Journal of Nuclear Medicine, shows that an advanced image analysis technique, radiomics, can non-invasively identify underlying cell mutations in patients with non-small cell lung cancer (NSCLC).

More people in the United States die from lung cancer than from any other type of cancer, and NSCLC is the most common form.

The characteristics of metabolic tumors have been quantified by PET radiomics, but little is known about the relationship between these characteristics, or phenotypes, and the underlying mutations that cause them. This information is key to precision medicine—selecting the therapy that will work best for a particular patient.

“To our knowledge, this is the first study to investigate the relationship between somatic mutations and the metabolic phenotypes, which may provide valuable information for developing non-invasive imaging biomarkers for determining mutation status,” explained Stephen Yip, Ph.D., Harvard Medical School. “Identifying mutation status in NSCLC patients is an important component of selecting an optimal treatment plan for the patient. The current standard of care uses molecular testing based on biopsies of tumor tissue or surgical resection to identify mutation status. Molecular testing, however, can be limited by invasive procedures and long processing times. In addition, tissue samples are not always readily available.”

For the study, 348 NSCLC patients underwent diagnostic F-18-fluorodoxyglucose PET (F-18-FDG PET) scans and were tested for genetic mutations. Of those patients, 13 percent (44/348) and 28 percent (96/348) were found to harbor an epidermal growth factor receptor (EGFR) or Kristen rat sarcoma viral (KRAS) mutations, respectively. The analysis evaluated 21 imaging features: 19 independent radiomic features quantifying phenotypic traits and 2 conventional features (metabolic tumor volume and maximum standard uptake value).

The results indicate that EGFR mutations may drive different metabolic tumor phenotypes that are captured in PET images, whereas KRAS-mutated tumors do not. This proof-of-concept study sheds light on genotype-phenotype interactions using radiomics to capture and describe the phenotype.

Yip noted, “This study may thus help develop an imaging biomarker that can non-invasively and accurately identify EGFR mutation status using PET imaging to complement, but not to replace, molecular testing.”

For more information: www.jnm.snmjournals.org


Related Content

News | Magnetic Resonance Imaging (MRI)

April 17, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with the ...

Time April 17, 2024
arrow
News | Radiopharmaceuticals and Tracers

April 5, 2024 — RLS Radiopharmacies, America’s only Joint Commission-accredited radiopharmacy network, today announced ...

Time April 05, 2024
arrow
News | Population Health

April 4, 2024 — A new study found increased coronary vessel wall thickness that was significantly associated with ...

Time April 04, 2024
arrow
News | Radiation Oncology

April 2, 2024 — In a 10-center study, microwave ablation offered progression free survival rates and fewer complications ...

Time April 02, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | ACR

March 21, 2024 — The Advanced Research Projects Agency for Health (ARPA-H) has appointed American College of Radiology ...

Time March 21, 2024
arrow
News | Coronavirus (COVID-19)

March 21, 2024 — Artificial intelligence can spot COVID-19 in lung ultrasound images much like facial recognition ...

Time March 21, 2024
arrow
News | Breast Imaging

March 20, 2024 — IceCure Medical Ltd., developer of the ProSense System, a minimally-invasive cryoablation technology ...

Time March 20, 2024
arrow
News | Coronavirus (COVID-19)

March 20, 2024 — SARS-CoV-2, the virus that causes COVID-19, can damage the heart even without directly infecting the ...

Time March 20, 2024
arrow
Subscribe Now