Feature | Radiation Dose Management | September 08, 2017 | By Dave Fornell

The Basics of Radiation Dose Monitoring in Medical Imaging

This article originally ran as an introduction to the Radiation Dose Management comparison chart in the September 2017 issue. The chart can be viewed here.

Patient X-ray radiation exposure from medical imaging has been a hot topic in radiology and has prompted the implementation of radiation dose monitoring systems.

Patient X-ray radiation exposure from medical imaging has been a hot topic in radiology and has prompted the implementation of radiation dose monitoring systems. Prior to these systems, dose measurements either were not tracked or required manual calculation of dose based on scanner data in the DICOM headers. Since radiation doses per exam were often elusive, dose levels and scanning protocols vary, often greatly, between centers. Also, without automated dose tracking, no national standards have ever been established. Today, radiation dose tracking software is accumulating data at hospitals and in a nationwide dose reporting registry to help eventually set new standards.

The issue of dose monitoring came to the forefront a few years go after a couple reports in mainstream media on the extreme overexposure of patients to radiation doses during computed tomography (CT) exams at major hospitals on both the East and West Coasts. One of the biggest publicly reported incidents of radiation overexposure occurred in California in 2011. Due to improper settings on CT scanners, numerous patients received radiation burns and about 200 patients suffered hair loss, said Mahadevappa Mahesh, MS, Ph.D., chief physicist and professor of radiology and radiological science at Johns Hopkins Hospital, an expert in medical imaging radiation dose tracking. These incidents prompted California to pass a law now requiring radiologists to report the dose used in each exam. Texas also followed suit with similar legislation and other states are now considering their own versions of dose recording laws.

“The discussion about radiation dose has increased significantly over the past 10 years, and it is scaring a lot of patients,” Mahesh said. “This is partly because there is a lot of false information out there, and the mainstream media sometimes reports that medical imaging radiation can really cause harm. But it is helping on the other side in that it has changed the way we do imaging.”

In addition to changing laws in a couple states to require dose recording, public pressure from patients and mass media has led to a cultural change in many imaging departments. It also led to new dose recording requirements by the Joint Commission to maintain medical imaging certification.

 

How to Calculate Dose

There are several ways to calculate radiation dose measurement, and several different measurement units. Mahesh said this area is still evolving because there is no standardization. However, there are some common methods to collect data using the dose descriptor information automatically recorded by the imaging system and using multipliers to come up with an estimated, ballpark dose exposure. For example in CT imaging, dose parameters recorded by the scanners include CTDIvol and dose length product (DLP).

“These parameters are not patient dose, however, they are more like standard outputs for a particular technique, but they serve as a good estimator of patient dose,” Mahesh said.

He said it needs to be understood that estimates for dose using CTDIvol or DLP are based on ideal phantom model testing, using either a 32 cm water phantom to represent an average adult, or a 16 cm water phantom for an average pediatric patient. Mahesh said these are testing objects, not real people that come in all different shapes and sizes, and no patient is shaped like a cylinder. He stresses all dose measurements are ballpark estimates. Research into radiation dose is constantly changing based on new information. As new imaging technology becomes available and as the values for calculating dose change, he said it becomes complex to explain to patients or physicians why dose parameters for the same exam type and same patient changed between scans that are several years apart.

 

National Average for Medical Imaging

A big issue in medical imaging is that no national guidelines on standard doses have ever been established, so dose levels can vary significantly. “We saw a wide range in the protocols,” Mahesh explained. “That can result in the same person who gets a head CT at five different centers getting five different dose values. So we are trying to bring that gap in radiation doses much closer together.”

For this reason, Mahesh said there is a lot of effort being devoted to the American College of Radiology (ACR) Dose Index Registry. Hospitals can voluntarily sign up to participate in the registry and share anatomized patient dose information within the registry. In exchange, he said the hospitals can compare their dose averages for different protocols, type of exams and modalities used for hospitals in their area, or on a national level. “The idea is that eventually it will tell you where you are in these reference points so you can have an opportunity to refine and better manage your doses,” Mahesh said.

Dose levels have been dropping steadily over the past decade, but he said the pendulum has swung from one extreme of high dose to the other extreme of low dose. “At some of these extreme points of low dose, the images can get very hard to read or make a diagnosis,” Mahesh said. He suggests there should be some mechanism in the dose reporting quality assurance (QA) reports that note the diagnostic quality of the images. That way there can be a balance between the need to lower dose and a measure of the diagnostic quality of exams at specific dose ranges.

 

Need to Share Dose Reporting Data

At the end of the day, Mahesh said dose reporting analytics need to get into the hands of the radiologists and technologists, not just administrators or QA teams. “If administrators keep this information in a drawer and only pull it out for Joint Commission reviews, it is not serving its primary purpose,” he explained.

The human element is the weakest link in the chain for passing along key information in health informatics, including radiation dose statistics, said Paul Chang, M.D., FSIIM, professor of radiology, vice chair of radiology informatics, medical director of pathology informatics and enterprise imaging at the University of Chicago. During a health IT session at the Radiological Society of North American (RSNA) 2016 annual meeting, he said dashboards are often used by radiology administrators. However, dashboards often are not looked at unless the user is prompted by an alert or when they have a certification review. Unless the information can be shared with all the stakeholders involved in radiology, it is not effective and it will not affect change, Chang said. For this reason, he said use of automated reporting systems that make data available to all staff tends to be more helpful.

Mahesh said another issue with dose reporting data is interpretation, where a lot of radiologists and referring physicians might not understand what they are looking at. This includes not having a thorough understanding of how dose is calculated or what different dose levels mean for patient safety. Interpretation can also be a challenge if they see high-dose outliers, which could be due to the need for a retake exam because the patient moved and both exams were counted as one. A patient also might have a very high body mass index (BMI), which attenuates X-rays and requires high doses for diagnostic-quality exams.

The clinicians who have the most direct control over what dose is used in scans are the radiology technologists. They have traditionally been under pressure by radiologists to provide good quality, diagnostic images and to eliminate the need for retakes. This can result in techs upping the dose to create great quality images.

 

Comparison Chart for Radiation Dose Monitoring Systems

This article originally ran as an introduction to the Radiation Dose Management comparison chart in the September 2017 issue. The chart can be viewed here.
 

 

Related Content

Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
FDA Clears GE's Deep Learning Image Reconstruction Engine
Technology | Computed Tomography (CT) | April 19, 2019
GE Healthcare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) of its Deep Learning Image...
Qaelum NV and Toyo Corp. Sign Japanese Distribution Agreement for Dose Monitoring Solution
News | Radiation Dose Management | April 10, 2019
Qaelum NV of Leuven, Belgium, and Toyo Corp. of Tokyo, Japan announced they have entered into a cooperation agreement...
Omega Medical Imaging Launches AI-enabled FluoroShield for Radiation Reduction
Technology | Radiation Dose Management | April 04, 2019
The U.S. Food and Drug Administration (FDA) granted Omega Medical Imaging 510(k) clearance to offer their artificial...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa
Johns Hopkins Medicine First in U.S. to Install Canon Medical's Aquilion Precision
News | Computed Tomography (CT) | March 26, 2019
March 26, 2019 — Johns Hopkins Medicine now has access to the first...
At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve).

At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve). Photo by Greg Freiherr

Feature | Cardiac Imaging | March 22, 2019 | By Greg Freiherr
Reflecting a trend toward the increased use of...
Researchers Use Radiomics to Predict Who Will Benefit from Chemotherapy
News | Radiomics | March 21, 2019
Using data from computed tomography (CT) images, researchers may be able to predict which lung cancer patients will...
HeartFlow Analysis Successfully Stratifies Heart Disease Patients at One Year
News | CT Angiography (CTA) | March 19, 2019
Late-breaking results confirm the HeartFlow FFRct (fractional flow reserve computed tomography) Analysis enables...
Podcast | Cardiac Imaging | March 15, 2019
Debate About Coronary Testing Highlights ACC Session