News | Stroke | March 23, 2016

University of Tennessee College of Medicine Launches Mobile Stroke Unit

New unit features CT and CT angiography capabilities to bypass the emergency department altogether and get patients directly into treatment

University of Tennessee, Mobile Stroke Unit, CT angiography, Siemens Somatom Scope
University of Tennessee, Mobile Stroke Unit interior, Siemens Somatom Scope CT scanner

March 23, 2016 — The University of Tennessee College of Medicine in Memphis introduced a new, comprehensive Mobile Stroke Unit, capable of conducting and producing advanced quality imaging for stroke diagnosis and noninvasive computed tomography (CT)-angiography with a Siemens Somatom Scope CT scanner.

The Mobile Stroke Unit creates the ability to diagnose and launch treatment, including tissue plasminogen activator (tPA) treatment and the potent blood pressure drug nicardipine, within the critical first hour time frame. It also provides the ability to select patients for endovascular interventions, neurosurgery and neuro-critical care directly from the prehospital arena.

Other Mobile Stroke Units allow for initial treatment to begin quickly and for prepping for emergency room arrival. The sophistication of The UT College of Medicine Mobile Stroke Unit means a patient will be prepped to go straight to the catheterization laboratory, neuro intensive care unit or hospital stroke unit, bypassing the stop in the emergency department entirely.

“We are thrilled to have this medical first in Memphis. I want to stress that the Mobile Stroke Unit is a product of worldwide industry leaders brought together to create the first-of-its-kind vehicle,” said David Stern, M.D., the Robert Kaplan Executive Dean and vice-Chancellor for Clinical Affairs for The University of Tennessee College of Medicine and The University of Tennessee Health Science Center. “The vehicle framework is from Canada, the Siemens Somatom Scope CT scanner was developed by a German company, the custom assembly took place in New York, with the oversight and direction coming from UT College of Medicine in Memphis, Tenn. led by Dr. Andrei V. Alexandrov, the chairman of the Department of Neurology at The University of Tennessee Health Science Center and Semmes-Murphey Professor, who is originally from Russia.”

Weighing in at more than 14 tons, the unit includes features and capabilities such as:

  • A hospital-quality CT scanner with advanced imaging capabilities to not only allow brain imaging, but also imaging of blood vessels in the brain. Other Mobile Stroke Units in the United States and Europe use smaller portable CT scans that only image the brain (without vessels) and also require the team to move the patient for each slice (picture) that is taken. UT’s Mobile Stroke Unit provides the same number of slices in high resolution as obtained and expected in the hospital setting since it is equipped with a dedicated gantry that automatically moves the patient to obtain images;
  • Due to these advanced imaging capabilities, the Mobile Stroke Unit will be able to bypass hospital emergency departments and take patients directly to endovascular suites, operating rooms, stroke or neurocritical units;
  • It is the largest Mobile Stroke Unit in the world, complete with an internal power source capable of matching regular electrical outlet access;
  • It is the first in the world to be staffed with stroke fellowship-trained, doctorally-prepared nurses certified as advanced neurovascular practitioners (ANVP-B); and
  • The Mobile Stroke Unit capacity includes the ability to transport trainees and researchers interested in building the science of early stroke management.

“We have a tremendous burden of stroke in Shelby County, with a stroke rate per 100,000 population that is 37 percent higher than the national average,” said Stern. “The goal of the Mobile Stroke Unit is to minimize morbidity and mortality, to have more patients walk out of the hospital fully functional. Time is everything for stroke treatment; the quicker we are able to assess and attend to a patient, the better his or her chances are for recovery.”

“If we eliminate the treatment delay getting to and through the emergency room, we can save up to 90 minutes, and as a neurologist, I know that time is brain, so the more time we save, the less likely it is that permanent brain damage will occur in a patient. Our hypothesis is that we will deliver hospital-level standard of stroke care faster, equally safe, but with better outcomes due to the ability to intervene much earlier,” said Alexandrov. “Our ‘time to treatment’ target is less than one hour.”

The UT Mobile Stroke Unit is funded through a public-private collaboration for which more than $3 million has been raised, which will enable operation for up to three years. The unit will operate 12 hours a day, one week on and one week off beginning late April 2016.

“The Mobile Stroke Unit will be based in the heart of a 10-mile, most-critical-needs areas of Memphis with the highest incidence of stroke, but can be deployed within the entire metro region. We estimate that 300 patients will need to be treated by the Mobile Stroke Unit to prove its effectiveness over the course of three years,” said Alexandrov. “We believe this study will help establish a baseline of results that medical communities worldwide can use to develop and deploy similar programs to affect stroke outcomes. Our goal is a sustainable model for future funding and an overall lowering of morbidity and mortality through early treatment.”

For more information: www.uthsc.edu/medicine

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Updated CT scoring criteria from AJR considers both lobe involvement and changes in CT findings to quantitatively and accurately evaluate the progression of COVID-19 pneumonia

CT scoring criteria were applied to images from sequential chest CT examinations. A, Initial chest CT image obtained 2 days after onset of symptoms shows small region of subpleural ground-glass opacities in right lower lobe, for CT score of 1. B, Chest CT image obtained on day 3 of treatment shows slightly enlarged region of subpleural ground-glass opacities with partial crazy-paving pattern and consolidation, for CT score of 3. C, Chest CT image obtained on day 5 of treatment shows partial resolution of consolidation, for CT score of 2. D, Chest CT image obtained on day 14 of treatment shows continued resolution of consolidation with minimal residual ground-glass opacities, for CT score of 1. Image courtesy of American Journal of Roentgenology (AJR)

News | Computed Tomography (CT) | April 02, 2020
April 2, 2020 — Updated computed t...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Company emphasizes faster, more advanced CTs, making imaging easier for COVID-19 patients
News | Computed Tomography (CT) | April 01, 2020
April 1, 2020 — United Imaging, a global leader in advanc
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 A brief article from Henry Ford Health System in Detroit, published today in Radiology, reports on the first presumptive case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy.

A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Image courtesy of the Radiological Society of North America (RSNA)

News | Coronavirus (COVID-19) | March 31, 2020
March 31, 2020 — A brief article fr