News | Radiopharmaceuticals and Tracers | August 29, 2019

University of Alabama at Birmingham Leading Production of Theranostic Radioisotope

Trio of facilities will cooperate on production of isotopes of PET agent that can be used for diagnostic and therapeutic purposes but only has a half-life of 3.9 hours

University of Alabama at Birmingham Leading Production of Theranostic Radioisotope

Image courtesy of the University of Alabama at Birmingham

August 27, 2019 — The University of Alabama at Birmingham, in conjunction with researchers at the University of Wisconsin and Argonne National Laboratory in Illinois, have received a Department of Energy grant to solve a production roadblock for the radioactive isotopes 43Sc and 47Sc. These radioactive isotopes of the metallic element scandium (Sc) appear to be ideal for visualizing and then destroying solid tumors. A barrier, however, blocks their use — the inability to rapidly produce and purify the isotopes in useful amounts. 43Sc has a half-life of 3.9 hours, so every four hours more than half the radioactivity is lost. It must be used in a positron emission tomography (PET) scan the same day it is made.

43Sc and 47Sc are a sought-after “theranostic” pair, said Suzanne Lapi, Ph.D., director of the UAB Cyclotron Facility, professor in the UAB Department of Radiology and leader on the grant.

Both 43Sc and 47Sc, if available, would be attached to a targeting peptide to guide them to a solid tumor for imaging and for tumor eradication. 43Sc would allow a diagnostic scan because it emits positrons, resulting in gamma radiation that would travel out of the body for detection and size measurement by a PET scan. 47Sc would deliver the therapy at the tumor by emitting a tissue-damaging beta particle.

The Lapi lab at UAB used the UAB cyclotron — a key machine for the development of advanced cancer diagnosis and treatment at the O’Neal Comprehensive Cancer Center at UAB — for preliminary work on how to make the theranostic pair.

They found that protons, fired from the particle accelerator, formed Sc isotopes when using titanium oxide targets. Shaun Loveless, a graduate student in the Lapi lab, also developed a purification scheme — target titanium oxide was dissolved in acid and ammonium bifluoride and poured through an ion exchange column to separate Sc from titanium.

Because natural titanium is a mixture of five stable isotopes, these preliminary experiments did not yield pure 43Sc and 47Sc. Proton bombardment of natural titanium produced additional, contaminating Sc isotopes. The next step will use targets that are single stable isotopes of titanium, not a mixture.

Researchers at UAB, Wisconsin and Argonne have planned a multipronged production effort. UAB will use its 24 MeV cyclotron to irradiate titanium-46 and titanium-50 targets with protons. Wisconsin will use its 16 MeV cyclotron to irradiate calcium oxide targets with deuteron particles, made of one proton and one neutron. Argonne will irradiate titanium targets with gamma rays.

All three labs will work together, at small scales, to perfect the purification of 43Sc and 47Sc from the target materials.

Lapi said UAB’s targeting expertise and its powerful cyclotron helped the university compete for the $390,000 research grant. She also said all three sites will involve graduate students in collaborative training and research, which is a goal of the Department of Energy to prepare the future workforce.

The UAB Cyclotron Facility has national recognition. It produces zirconium-89 and other isotopes for clinicians and researchers at institutions that include Stanford University, the University of California, MD Anderson Center in Houston, the University of Pennsylvania, Yale University and Memorial Sloan Kettering Cancer Center in New York.

Funding for this isotope production research comes from Department of Energy Isotope Program grant DE-SC0020197. The federal Isotope Program supports development of production techniques for radioactive and stable isotopes that are in short supply for research and have strategic importance to the nation.

In the UAB Department of Radiology, Lapi is also vice chair of Translational Research, director of the Radiochemistry Laboratory and division director of Advanced Medical Imaging Research. She is also a senior scientist in the O’Neal Comprehensive Cancer Center at UAB.

For more information: www.uab.edu

Related Content

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Feinstein Institutes' Thomas Chaly, Ph.D., poses in front of a PET-CT imaging machine. He has been instrumental in pushing for FDA approval of a new PET imaging agent, Fluorodopa F-18 (FDOPA), to combat Parkinson’s

Feinstein Institutes' Thomas Chaly, Ph.D., in front of a PET-CT imaging machine. He has been instrumental in pushing for FDA approval of a new PET imaging agent, Fluorodopa F-18 (FDOPA), to combat Parkinson’s

News | Nuclear Imaging | December 26, 2019
December 26, 2019 — The Feinstein Institutes for Medical R...
Prof. Dr. Samer Ezziddin from Saarland University/Saarland University Hospital.

Prof. Dr. Samer Ezziddin from Saarland University/Saarland University Hospital. Photo courtesy of Thorsten Mohr/Saarland University

News | Prostate Cancer | November 28, 2019
November 28, 2019 — Reports of new cancer treatments
 Prostate cancer MRI
News | Clinical Trials | November 15, 2019
November 15, 2019 — Theragnostics, which is developing innovative radiopharm
Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can bee seen in this photo on either side of the patient bed. These can be rotated above the patient.

Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can be seen in this photo on either side of the patient bed. These can be rotated above the patient.

Feature | Nuclear Imaging | November 05, 2019 | Dave Fornell, Editor
November 5, 2019 — Philips Medical System is recalling the Forte Gamma Camera System due to the potential for the 660
 Phoenix’s fusion neutron generation technology.
News | Radiopharmaceuticals and Tracers | October 28, 2019
October 28, 2019 — Phoenix LLC and Shine Medical Technologies LLC, nuclear technology companies focused on near-term
GE Healthcare and Theragnostics Partnering on PSMA PET/CT Imaging Agent
News | Prostate Cancer | October 16, 2019
GE Healthcare and Theragnostics have entered into a global commercial partnership for a new prostate-specific membrane...