News | April 30, 2015

PET agent provides higher-quality images from first generation at half the dose

prostate cancer, [18F]DCFPyL, PSMA, biomarker, Johns Hopkins, WMIS

April 30, 2015 — A first-in-human prostate cancer study in the Journal of Molecular Imaging and Biology showed initial safety, biodistribution and dosimetry results with [18F]DCFPyL, a second-generation fluorine-18 labeled small-molecule prostate-specific membrane antigen (PSMA) inhibitor. The imaging biomarker has been developed at Johns Hopkins University in Baltimore by study co-author Martin G. Pomper, M.D., Ph.D.

“This initial human evaluation of [18F]DCFPyL demonstrated a number of important findings. The radiotracer was safe, and parallels the expected uptake with significantly improved visual conspicuity of suspected sites of metastatic prostate cancer in comparison to our first generation radiotracer,” said Pomper, William R. Brody Professor of Radiology at Johns Hopkins.

[18F]DCFPyL is a second-generation small-molecule positron emission tomography (PET) agent that attaches to the PSMA. Signals from [18F]DCFPyL can then be measured via a PET scan. The study demonstrated that [18F]DCFPyL produced images that showed lower blood pool activity, providing clearer images than the first-generation agent, [18F]DCFBC, produced by the same group. The study also showed 50 percent lower radiation dose in the most sensitive organs.

According to the American Cancer Society, about 220,800 new cases and 27,540 deaths will occur from prostate cancer in the United States in 2015. While prostate cancer is often curable, there remain a large number of patients with residual, recurrent and metastatic disease who need imaging for lesion detection, therapeutic monitoring and restaging. Conventional imaging has not proven to be sufficiently sensitive and specific for detection of prostate cancer lesions.

“The basis of more accurate, molecularly-informed classification of disease is the premise of precision medicine and specific molecular imaging biomarkers are the keys to determine how we classify diseases, how we select therapy, how we monitor therapy, and ultimately how we make treatments more accurate for each individual for better patient outcomes,” said Jason Lewis, M.D,. Ph.D., professor and vice chair for research, Emily Tow Jackson Chair at Memorial Sloan-Kettering Cancer Center, and president of the World Molecular Imaging Society (WMIS). “We commend the team at Johns Hopkins for developing a more sensitive and accurate PSMA.”

For more information: www.wmis.org


Related Content

News | Magnetic Resonance Imaging (MRI)

April 17, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with the ...

Time April 17, 2024
arrow
Feature | Radiation Oncology | By Melinda Taschetta-Millane

In a new 3-part video series on advancements in diagnostic radiology with Robert L. Bard, MD, PC, DABR, FASLMS ...

Time April 10, 2024
arrow
News | Radiopharmaceuticals and Tracers

April 5, 2024 — RLS Radiopharmacies, America’s only Joint Commission-accredited radiopharmacy network, today announced ...

Time April 05, 2024
arrow
News | Population Health

April 4, 2024 — A new study found increased coronary vessel wall thickness that was significantly associated with ...

Time April 04, 2024
arrow
News | Radiation Oncology

April 2, 2024 — In a 10-center study, microwave ablation offered progression free survival rates and fewer complications ...

Time April 02, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | ACR

March 21, 2024 — The Advanced Research Projects Agency for Health (ARPA-H) has appointed American College of Radiology ...

Time March 21, 2024
arrow
News | Artificial Intelligence

March 21, 2024 — Avenda Health, an AI healthcare company creating the future of personalized prostate cancer care ...

Time March 21, 2024
arrow
News | Breast Imaging

March 20, 2024 — IceCure Medical Ltd., developer of the ProSense System, a minimally-invasive cryoablation technology ...

Time March 20, 2024
arrow
Subscribe Now