News | Radiopharmaceuticals and Tracers | March 14, 2019

Researchers Create New Method for Developing Cancer Imaging Isotopes

New method produces high-purity zirconium-89, a diagnostic radionuclide used to image cancerous tumors

Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

March 14, 2019 — A team of researchers at the University of Washington announced they developed a new automated system for producing zirconium-89, a diagnostic radionuclide used for cancer tumor imaging.

Ideal for cancer tumor imaging, zirconium-89 lasts long enough in the body to find tumors and be imaged using positron emission tomography (PET) scans. Producing this useful radionuclide requires commonly found low-energy cyclotrons. The researchers produced zirconium-89 by proton beam irradiation of yttrium metal foils at the university’s 11-MeV cyclotron. They then transported the foils to researchers at the Pacific Northwest National Laboratory. The research team developed an automated dual column system that dissolved the foil targets and isolated the zirconium-89 from the dissolved yttrium target (and metal contaminants found in the yttrium metal). The process consistently generated a highly concentrated and pure solution of zirconium-89 that demonstrated excellent binding to deferoxamine, a radionuclide-binding ligand frequently used in tumor-targeting molecules. A patent has been applied for this novel purification method.

As the zirconium-89 supply is currently meeting demand, this is not an isotope sold through the U.S. Department of Energy (DOE) Isotope Program. However, this work, supported by the DOE Isotope Program, shows that zirconium-89 can be produced on lower energy (and more abundant) cyclotrons with a simple target design. The new automated approach could make high-quality batches more available and reduce exposure for radiation workers. Also, the approach offers a high chemical yield and low metal ion impurities, minimizing interference with tumor targeting.

This work was funded by the Department of Energy, Office of Science, Office of Nuclear Physics, Isotope Development and Production for Research and Applications subprogram. Funding was also provided by the National Institutes of Health. The researchers used the CT/Eclipse/111 cyclotron at the University of Washington.

For more information: www.science.energy.gov

Publications

J.M. Link, K.A. Krohn, and M.J. O’Hara, “A simple thick target for production of 89Zr using an 11MeV cyclotron.” Applied Radiation and Isotopes 122, 211 (2017). [DOI: 10.1016/j.apradiso.2017.01.037]

M.J. O’Hara, N.J. Murray, J.C. Carter, C.M. Kellogg, and J.M. Link, “Hydroxamate column-based purification of zirconium-89 (89Zr) using an automated fluidic platform.” Applied Radiation and Isotopes 132, 85 (2018). [DOI: 10.1016/j.apradiso.2017.10.048]

M.J. O’Hara, N.J. Murray, J.C. Carter, and S.S. Morrison, “Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform.” Journal of Chromatography A 1545, 48 (2018). [DOI: 10.1016/j.chroma.2018.02.053]

M.J. O’Hara, N.J. Murray, J.C. Carter, C.M. Kellogg, and J.M. Link, “Tandem column isolation of zirconium-89 from cyclotron bombarded yttrium targets using an automated fluidic platform: Anion exchange to hydroxamate resin columns.” Journal of Chromatography A 1567, 37 (2018). [DOI: 10.1016/j.chroma.2018.06.035]

Related Content

 “Cyclotrons used in Nuclear Medicine Report & Directory, Edition 2020” that describes close to 1,500 medical cyclotrons worldwide
News | Nuclear Imaging | March 10, 2020
March 10, 2020 — MEDraysintell released its new and unique report “...
MR Solutions’ dry magnet MRI system for molecular imaging on display at EMIM 2020
News | Magnetic Resonance Imaging (MRI) | February 28, 2020
February 28, 2020 — MR Solutions will be displaying its la
Potassium Molybdate Mo 99 Source Vessels for RadioGenix System

Potassium Molybdate Mo 99 Source Vessels for RadioGenix System (Photo: Business Wire)

News | Radiopharmaceuticals and Tracers | February 18, 2020
February 18, 2020 — NorthStar Medical Radioisotopes, LLC, a
SIR-Spheres Y-90 resin

SIR-Spheres Y-90 resin microspheres are released into the hepatic artery.

News | Nuclear Imaging | February 14, 2020
February 14, 2020 —  ...
Nuclear imaging equipment growth in 2020
News | Nuclear Imaging | February 14, 2020
February 14, 2020 — The nuclear imaging equipment
A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast

A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast. (A) Unenhanced fat-saturated T1-weighted MRI shows extreme amount of FGT (ACR d). (B) Moderate BPE is seen on dynamic contrast-enhanced MRI at 90 s. (C) Mean ADC of breast parenchyma of contralateral breast on diffusion-weighted imaging with ADC mapping is 1.5 × 10?3 mm2/s. (D) On 18F-FDG PET/CT, lesion is not 18F-FDG-avid, and BPU of normal breast parenchyma is relatively high, with SUVmax of 3.2. Photo courtesy of K Pinker, et al., Medical University of Vienna, Vienna, Austria

News | PET-MRI | January 27, 2020
January 27, 2020 — Researchers have identified several potentially useful...
Nuclear imaging of the spine shown on Philips Healthcare BrightView XCT

Image courtesy of Philips Healthcare

News | Nuclear Imaging | January 27, 2020
January 27, 2020 — According to the new market research report "...
This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Feinstein Institutes' Thomas Chaly, Ph.D., poses in front of a PET-CT imaging machine. He has been instrumental in pushing for FDA approval of a new PET imaging agent, Fluorodopa F-18 (FDOPA), to combat Parkinson’s

Feinstein Institutes' Thomas Chaly, Ph.D., in front of a PET-CT imaging machine. He has been instrumental in pushing for FDA approval of a new PET imaging agent, Fluorodopa F-18 (FDOPA), to combat Parkinson’s

News | Nuclear Imaging | December 26, 2019
December 26, 2019 — The Feinstein Institutes for Medical R...