News | PET Imaging | January 24, 2018

PET Tracer Measures Damage From Multiple Sclerosis in Mouse Models

Novel approach may improve diagnosis and monitoring for MS patients

PET Tracer Measures Damage From Multiple Sclerosis in Mouse Models

January 24, 2018 — The loss or damage of myelin, a cellular sheath that surrounds and insulates nerves, is the hallmark of the immune-mediated neurological disorder multiple sclerosis (MS). When segments of this protective membrane are damaged, nerve impulses can be disrupted. Symptoms range from tingling and numbness to weakness, pain and paralysis.

There is currently no reliable way to directly image demyelination. Physicians rely on magnetic resonance imaging (MRI), but despite high resolution images, MRI is not quantitative and cannot distinguish between demyelination and inflammation, which often coexist in people with MS.

In the Jan. 12, 2018 online issue of the journal Scientific Reports, a multi-institutional team based primarily at the University of Chicago Medicine and the National Institutes of Health, describe early tests of a novel minimally-invasive way to assess myelin damage using positron emission tomography (PET).

These PET scans use a radioactive molecule designed to target voltage-gated potassium channels, a protein found on demyelinated axons. The PET images, based on the detection of this molecule, provide quantitative information about underlying biochemical processes.

“In healthy myelinated neurons, potassium channels are usually buried underneath the myelin sheath,” explained study author Brian Popko, Ph.D., the Jack Miller Professor of Neurological Disorders and director of the center for peripheral neuropathy at the University of Chicago. “When there is loss of myelin, these channels become exposed. They migrate throughout the demyelinated segment and their levels increase.”

These exposed neurons leak intracellular potassium. This leaves them unable to propagate electrical impulses, which causes some of the neurological symptoms seen in MS. “So we developed a PET tracer that can target potassium channels,” Popko said.

The team started with an existing MS drug, 4-aminopyridine (also known as dalfampridine), which can bind to exposed potassium channels. This can partially restore nerve conduction and alleviate neurological symptoms in MS patients. Using mouse models of MS, including some developed in the Popko lab, the researchers showed that the drug accumulated in the demyelinated, or uncovered, areas of the central nervous system.

Then, with help from colleague Pancho Bezanilla, Ph.D., professor of biochemistry and molecular biology at the University of Chicago, the team examined several fluorine-containing derivatives of 4-aminopyridine for binding to K+ channels. They found that 3-fluoro-4-aminopyridine (3F4AP) has the desired properties, so they labeled the molecule with fluorine-18, which is easily detected by PET.

“We were able to show, in rats, that the tracer accumulated to a higher degree in demyelinated areas than in control areas,” Popko said.

“All existing PET tracers used for imaging demyelination bind to myelin and, consequently, demyelinated lesions show as decreases in signal, which can be problematic for imaging small lesions,” said Pedro Brugarolas, Ph.D., first author of the paper and currently a faculty member at Massachusetts General Hospital/Harvard Medical School. “3F4AP is the first tracer whose signal increases with demyelination, potentially solving some of the problems of its predecessors.”

Finally, in collaboration with scientists at the NIH, the researchers conducted a study in healthy monkeys. They confirmed that radiolabeled 3F4AP enters the brain of primates and localizes to areas where there is little myelin.

“We think that this PET approach can provide complementary information to MRI which can help us follow MS lesions over time,” Popko said. “It has the potential to track responses to remyelinating therapies, an unmet need. This approach should also help determine how much disruption of the myelin sheath contributes to other central nervous system disorders.”

That list includes leukodystrophies, traumatic brain injury, spinal cord injury and “even maladies not traditionally associated with demyelination,” Popko suggested, “such as brain ischemia, psychiatric disorders, and neurodegenerative diseases, including Alzheimer’s.”

“A tracer to monitor changes in something as ubiquitous as potassium channels could have applications for other diseases where these channels are involved,” Brugarolas added.

For more information: www.nature.com/srep

 

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
 “Cyclotrons used in Nuclear Medicine Report & Directory, Edition 2020” that describes close to 1,500 medical cyclotrons worldwide
News | Nuclear Imaging | March 10, 2020
March 10, 2020 — MEDraysintell released its new and unique report “...
MR Solutions’ dry magnet MRI system for molecular imaging on display at EMIM 2020
News | Magnetic Resonance Imaging (MRI) | February 28, 2020
February 28, 2020 — MR Solutions will be displaying its la
Potassium Molybdate Mo 99 Source Vessels for RadioGenix System

Potassium Molybdate Mo 99 Source Vessels for RadioGenix System (Photo: Business Wire)

News | Radiopharmaceuticals and Tracers | February 18, 2020
February 18, 2020 — NorthStar Medical Radioisotopes, LLC, a
SIR-Spheres Y-90 resin

SIR-Spheres Y-90 resin microspheres are released into the hepatic artery.

News | Nuclear Imaging | February 14, 2020
February 14, 2020 —  ...
Nuclear imaging equipment growth in 2020
News | Nuclear Imaging | February 14, 2020
February 14, 2020 — The nuclear imaging equipment
A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast

A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast. (A) Unenhanced fat-saturated T1-weighted MRI shows extreme amount of FGT (ACR d). (B) Moderate BPE is seen on dynamic contrast-enhanced MRI at 90 s. (C) Mean ADC of breast parenchyma of contralateral breast on diffusion-weighted imaging with ADC mapping is 1.5 × 10?3 mm2/s. (D) On 18F-FDG PET/CT, lesion is not 18F-FDG-avid, and BPU of normal breast parenchyma is relatively high, with SUVmax of 3.2. Photo courtesy of K Pinker, et al., Medical University of Vienna, Vienna, Austria

News | PET-MRI | January 27, 2020
January 27, 2020 — Researchers have identified several potentially useful...