News | PET Imaging | October 24, 2018

PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Study of PET radiotracer in preclinical mouse model may offer noninvasive alternative to liver biopsies for more personalized treatment

PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

October 24, 2018 — While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications. These effects may soon be a thing of the past for some patients thanks to new research showing positron emission tomography (PET) imaging with the 18F-FAC radiotracer can be used as a non-invasive substitute. The study is featured in the October issue of The Journal of Nuclear Medicine.1

Sometimes immune cells work a little too hard, leading to attacks on organs, especially in instances of organ transplant. What results is a lifetime reliance on immunosuppressant drugs, which need to be carefully administered to ensure they are working as intended without dangerous side effects. Physicians look for T cells to determine whether an organ is under attack, requiring a biopsy to sample tissues. Now, PET imaging might offer a non-invasive alternative in the case of immune cell attack on the liver.

A team of researchers created a preclinical mouse model, testing the use of PET imaging to image T cells in the liver. The study shows that PET with the 18F-FAC radiotracer can be used to image T cells as they attack the liver or during treatment with an immunosuppressive drug.

"The personalized treatment of patients suffering from immune attack on the liver will require precise and quantitative methods for measuring T cells in the liver," said Peter Clark, Ph.D. "Our work describes in a preclinical model one such way of doing this. We envision that if this approach is translated into the clinic, it could lead to fewer liver biopsies and more precise treatment of patients with immune-related liver disease."

The team said they hope this study and others open the possibility of using molecular imaging to diagnose and manage chronic liver diseases as they become increasingly prevalent around the world.

"We and others are working to identify where and how molecular imaging and nuclear medicine could be used to improve the diagnosis and treatment of liver disease," Clark said. "Our study is just one example of this, but it adds to growing literature that suggests an important role for PET in the liver field."

For more information: www.jnm.snmjournals.org

Reference

1. Salas J.R., Chen B.Y., Wong A., et al. 18F-FAC PET selectively images hepatic infiltrating CD4 and CD8 T cells in a mouse model of autoimmune hepatitis. Journal of Nuclear Medicine, published online April 26, 2018. doi: 10.2967/jnumed.118.210328

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
FDA Clears United Imaging Healthcare uExplorer Total-Body Scanner
Technology | PET-CT | January 23, 2019
January 23, 2019 — United Imaging Healthcare (United Imaging) announced U.S.
MIM Software Inc. Receives FDA 510(k) Clearance for Molecular Radiotherapy Dosimetry
Technology | Nuclear Imaging | January 16, 2019
MIM Software Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for molecular radiotherapy...
Videos | SPECT-CT | December 12, 2018
This is a walk around of the new Spectrum Dynamics Veriton SPECT-CT nuclear imaging system introduced at the 2018 ...