News | PET Imaging | August 02, 2016

Big data may help determine best treatment, suggests large study

PET, positron emission tomography, genetically linked lung cancer, AAPM, big data

August 2, 2016 — A cutting-edge method of extracting big data from positron emission tomography (PET) images can provide additional information to quantify lung tumors caused by a genetic mutation. This information could help guide the most effective treatment, suggest findings of a study of nearly 350 patients being presented at the 58th Annual Meeting of the American Association of Physicists in Medicine (AAPM), July 31-Aug. 4 in Washington, D.C.

Advances in genomics – the analysis of an organism’s genetic information – have shown that non-small cell lung cancer (NSCLC), the most common type of lung cancer, often is caused by mutations in specific genes. These mutations include epidermal growth factor receptor (EGFR) and Kristen rat sarcoma viral (KRAS). For example, 15 percent of patients have EGFR mutations and often benefit from tyrosine kinase inhibitor (TKI) therapies. Therefore, identification of these mutations is crucial for selecting the most effective treatment for these patients. 

PET imaging often is used to assess tumor glucose metabolism and an essential tool for lung cancer management. Studies have shown that some of the biological and genetic variations within tumors potentially can be captured in PET images.

Using big data radiomics — extracting comprehensive information from PET images — researchers evaluated the associations between radiomic features of tumors and EGFR and KRAS mutations in about 350 NSCLC lung cancer patients. The mutations were confirmed by molecular testing based on biopsies of tumor tissues, the standard of care for mutation identification. Researchers found that radiomic features describing different aspects of the tumor, such as its shape and textures, appear to be associated with EGFR mutations. Their results suggest that different metabolic imaging patterns (or imaging phenotypes) that are quantified by radiomic features may be caused by EGFR mutations.

“Our long-term goal would be to use PET or another imaging technique to develop non-invasive imaging biomarkers that complement molecular tests,” said Hugo Aerts, Ph.D., director of the Computational Imaging and Bioinformatics Laboratory at Dana Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School in Boston.

“Medical images are regularly acquired for every cancer patient that comes into our clinic for treatment, which is the case at many other cancer centers as well,” said Stephen Yip, Ph.D., an instructor at Harvard Medical School, Dana Farber Cancer Institute and Brigham and Women’s Hospital. “This early research suggests that standard-of-care PET imaging may help guide doctors in identifying patients with EGFR mutations, potentially providing valuable information for personalized lung cancer therapy.”

“More research needs to be done to further understand the complementary role of PET imaging to molecular testing,” Aerts said.

The researchers are now assessing combining PET-based radiomic features with features derived from other imaging tests, such as computed tomography (CT) or magnetic resonance imaging (MRI), to improve the accuracy of genetic mutation identification in lung and brain cancers.

For more information: www.aapm.org


Related Content

News | Magnetic Resonance Imaging (MRI)

April 17, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with the ...

Time April 17, 2024
arrow
News | Radiopharmaceuticals and Tracers

April 5, 2024 — RLS Radiopharmacies, America’s only Joint Commission-accredited radiopharmacy network, today announced ...

Time April 05, 2024
arrow
News | Population Health

April 4, 2024 — A new study found increased coronary vessel wall thickness that was significantly associated with ...

Time April 04, 2024
arrow
News | Radiation Oncology

April 2, 2024 — In a 10-center study, microwave ablation offered progression free survival rates and fewer complications ...

Time April 02, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | ACR

March 21, 2024 — The Advanced Research Projects Agency for Health (ARPA-H) has appointed American College of Radiology ...

Time March 21, 2024
arrow
News | Coronavirus (COVID-19)

March 21, 2024 — Artificial intelligence can spot COVID-19 in lung ultrasound images much like facial recognition ...

Time March 21, 2024
arrow
News | Breast Imaging

March 20, 2024 — IceCure Medical Ltd., developer of the ProSense System, a minimally-invasive cryoablation technology ...

Time March 20, 2024
arrow
News | Coronavirus (COVID-19)

March 20, 2024 — SARS-CoV-2, the virus that causes COVID-19, can damage the heart even without directly infecting the ...

Time March 20, 2024
arrow
Subscribe Now