News | Neuro Imaging | September 04, 2019

Findings from MU study could help identify people at risk

Neurological Brain Markers Might Detect Risk for Psychotic Disorders

Researchers at the University of Missouri used MRI scans similar to this photo to find neurological markers in the human brain. These markers can be used to detect people at risk for developing psychotic disorders and to understand when this risk has been successfully treated. Image courtesy of Marquette University/John Kerns.


September 4, 2019 — Help may be on the way for people who might lose contact with reality through a psychotic disorder, such as schizophrenia.

People who may hear and see things that are not there could have symptoms of psychosis, better known as psychotic disorders. Now, researchers at the University of Missouri have found neurological markers in the human brain that can be used to detect people at-risk for developing psychotic disorders and to understand when this risk has been successfully treated.

“Psychotic disorders like schizophrenia are often lifelong and disabling for individuals,” said John Kerns, professor of psychology in the MU College of Arts and Science. “These disorders have major public health and societal costs greater than cancer. A major goal of our current research is to understand the nature of psychosis risk so we can prevent years of suffering.”

Researchers said psychotic disorders are associated with increased levels of dopamine — a chemical released by nerve cells — in a subregion of the brain called the striatum. This area is wired to process positive versus negative feedback for learning, often resulting in a person’s thoughts and actions based on what they’ve experienced in the past. Therefore, researchers suggest that psychotic disorders involve a faulty feedback in learning that then drives a person’s faulty beliefs and perceptions. However, measuring levels of dopamine in people is costly, invasive and not feasible in everyday clinical practice. In this new study, MU researchers used magnetic resonance imaging (MRI) at MU’s Brain Imaging Center and found that people at risk for psychotic disorders exhibit evidence of dysfunction in the striatum.

“This dysfunction is most evident when performing tasks where people need to learn from positive and negative feedback,” Kerns said. “For instance, we have found that the risk for psychotic disorders involves increased activation in the striatum for positive feedback, and negative feedback involves decreased activation in the same subregion of the brain.”

Researchers believe this pattern of activation could explain symptoms of psychotic disorders. For example, activation resulting from increased positive feedback could make a person’s assumption seem truer than it really is; meanwhile, activation from decreased negative feedback could make someone less likely to discard negative ideas. The team will conduct future research to examine how well an MRI can predict the risk of psychotic disorders and whether prevention treatments can ‘normalize’ MRI scans. They hope that their research will help prevent psychotic disorders, improve the lives of millions of people and greatly reduce public health costs.

The study, “Striatum-related functional activation during reward versus punishment based learning in psychosis risk”, was published in Neuropsychopharmacology.1 

For more information: www.nature.com/npp

 

Reference

1. Karcher N.R., Hua J.P.Y., Kerns J.G. Striatum-related functional activation during reward- versus punishment-based learning in psychosis risk. Neuropsychopharmacology, published online July 4, 2019. https://doi.org/10.1038/s41386-019-0455-z


Related Content

News | PET Imaging

April 24, 2024 — A new study from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare ...

Time April 24, 2024
arrow
News | Radiology Business

April 23, 2024 — A diverse writing group—lead by authors at the University of Toronto—have developed an approach for ...

Time April 23, 2024
arrow
News | Radiology Business

April 17, 2024 — VISTA.AI announced the appointment of Daniel Hawkins as President and CEO. The company is pioneering AI ...

Time April 17, 2024
arrow
News | Radiology Business

April 4, 2024 — FUJIFILM Healthcare Americas Corporation, a leading provider of diagnostic and enterprise imaging ...

Time April 04, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | FDA

March 27, 2024 — SyntheticMR announced that its next-generation imaging solution, SyMRI 3D, has received FDA 510(k) ...

Time March 27, 2024
arrow
News | Artificial Intelligence

March 1, 2024 — Royal Philips, a global leader in health technology, and magnetic resonance imaging (MRI) software ...

Time March 01, 2024
arrow
News | Cardiac Imaging

February 12, 2024 — According to the American Journal of Roentgenology (AJR), free-breathing cine-deep learning (DL) may ...

Time February 12, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

February 9, 2024 — Multiple sclerosis (MS) is a neurological disease that usually leads to permanent disabilities. It ...

Time February 09, 2024
arrow
News | Radiology Business

January 25, 2024 — Esaote Group, a leading Italian innovator in medical imaging, today unveiled its new brand identity ...

Time January 25, 2024
arrow
Subscribe Now