News | Radiopharmaceuticals and Tracers | October 27, 2017

Michael J. Fox Foundation and Tau Consortium Developing PET Tracers for Neurodegenerative Disease

Partnership will focus on creating imaging tracers for the detection of alpha-synuclein and tau proteins in the living brain

Michael J. Fox Foundation and Tau Consortium Developing PET Tracers for Neurodegenerative Disease

October 27, 2017 — The Michael J. Fox Foundation for Parkinson's Research (MJFF) and the Tau Consortium announced a funding partnership to accelerate development of novel positron emission tomography (PET) imaging tracers for the detection of the alpha-synuclein and tau proteins in the living brain.

Several neurodegenerative diseases — Parkinson's disease, Lewy body dementia, multiple system atrophy, progressive supranuclear palsy and frontotemporal dementia, among others — involve the aggregation of alpha-synuclein and/or tau. Tools to detect the location and abundance of these proteins would improve clinical care and speed drug development by allowing earlier and more definitive diagnosis, more precise trial subject selection, and more efficient and conclusive therapeutic impact assessment.

"The ability to monitor disease, potentially even before symptom onset, would revolutionize the patient care experience and the pace of drug development," said MJFF CEO Todd Sherer, Ph.D. "This partnership with the Tau Consortium will bring us closer to that goal."

Patrick Brannelly, program director of the Tau Consortium, said, "The process of developing a new PET tracer is challenging, complex and iterative. It makes sense for nonprofits and industry to pool their resources in pursuit of success."

Under this new partnership, the Tau Consortium and MJFF will convene and co-fund a team of leading scientists who will closely coordinate their development of compounds that may bind to alpha-synuclein or tau. Gil Rabinovici, M.D., of the University of California, San Francisco, will direct the initiative. The inaugural grantees are Chester Mathis, Ph.D., director of the University of Pittsburgh PET Facility, and Neil Vasdev, Ph.D., co-founder of MedChem Imaging LLC.

"It's an honor to work alongside these outstanding investigators and as the director of such an important initiative," said Rabinovici. "Presently, these protein aggregates can be measured only at autopsy. Our field needs better tools to enable earlier intervention with potentially disease-modifying treatments."

PET tracers to evaluate protein load in the living brain would allow clinicians and researchers to diagnose people in prodromal or early disease stage, leading care decisions and earlier intervention with potentially disease-modifying treatments. A hypothesis for why some drugs in testing fail is that study participants are too advanced in the disease; a nuclear imaging tracer would allow testing in earlier-stage volunteers. Additionally, data from PET tracers would allow researchers to evaluate the biological impact of their candidate drugs.

Given the importance of this technology, MJFF and the Tau Consortium have invested significantly in this area of research. For example, The Michael J. Fox Foundation is supporting other projects pursuing an alpha-synuclein PET tracer and last year announced a $2 million prize to the first group to develop a viable selective tracer and agree to make the tool available broadly.

For more information: www.michaeljfox.org, www.tauconsortium.org

Related Content

GE Healthcare and Theragnostics Partnering on PSMA PET/CT Imaging Agent
News | Prostate Cancer | October 16, 2019
GE Healthcare and Theragnostics have entered into a global commercial partnership for a new prostate-specific membrane...
Guerbet Signs Agreement With Icometrix for Exclusive Distribution of Icobrain
News | Neuro Imaging | October 16, 2019
Guerbet announced it has signed an exclusive agreement with Icometrix for the distribution in France, Italy and Brazil...
RSNA Announces Intracranial Hemorrhage AI Challenge
News | Artificial Intelligence | October 08, 2019
The Radiological Society of North America (RSNA) recently launched its third annual artificial intelligence (AI)...
Imaging Biometrics and Medical College of Wisconsin Awarded NIH Grant
News | Neuro Imaging | September 09, 2019
Imaging Biometrics LLC (IB), in collaboration with the Medical College of Wisconsin (MCW), has received a $2.75 million...
ASNC Announces Multisocietal Cardiac Amyloidosis Imaging Consensus
News | Cardiac Imaging | September 09, 2019
September 9, 2019 — The American Society of Nuclear Cardiology (ASNC) published a new expert consensus document along
Neurological Brain Markers Might Detect Risk for Psychotic Disorders

Researchers at the University of Missouri used MRI scans similar to this photo to find neurological markers in the human brain. These markers can be used to detect people at risk for developing psychotic disorders and to understand when this risk has been successfully treated. Image courtesy of Marquette University/John Kerns.

News | Neuro Imaging | September 04, 2019
Help may be on the way for people who might lose contact with reality through a psychotic disorder, such as...
A 3-D printed tungsten pre-clinical X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten pre-clinical X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | September 04, 2019 | By Steve Jeffery
In ...
A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one hold out who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one holdout who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

Feature | Nuclear Imaging | August 30, 2019 | Dave Fornell, Editor
In a surprising move, the National Institute for Radioelements (IRE) has applied for a new license to export highly e
Delaware Imaging Network Now Offers NeuroQuant Brain Imaging MRI Software
News | Neuro Imaging | August 29, 2019
Delaware Imaging Network (DIN), Delaware’s largest network of outpatient medical imaging centers, has added NeuroQuant...