Technology | Quality Assurance (QA) | September 12, 2019

IBA Dosimetry Releases myQA Machines Software at ASTRO 2019

New release of myQA Machines enables more efficient radiation therapy machine quality assurance, integrated into the independent global QA platform myQA

IBA Dosimetry Releases myQA Machines Software at ASTRO 2019

September 12, 2019 – IBA Dosimetry GmbH announced the launch of the new enhanced myQA Machines 2019 software environment at the upcoming American Society for Radiation Oncology (ASTRO) congress, Sept. 15-19 in Chicago.

The latest version of the myQA Machines software enables significantly faster execution of all key linear accelerator (linac) quality assurance (QA) tests. It also allows machine QA tests to be performed independently of the linac systems that are being verified.

The new myQA Machines has been designed to ensure QA efficiency through close integration with the treatment machines while maintaining independence from the machines to be tested, to provide the most reliable quality assurance performance.

To enhance workflow efficiency, each of the linac-specific tests of myQA Machines — like the multileaf collimator (MLC) and volumetric modulated arc therapy (VMAT) checks, as well as the 2-D and 3-D imaging QA tests — can now be measured and analyzed easily in a single workflow that is integrated in one dedicated software interface. Test automation further contributes to QA efficiency and avoids human subjectivity during test analysis.

For more information: www.iba-worldwide.com

Related Content

An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.
Nuclear imaging equipment growth in 2020
News | Nuclear Imaging | February 14, 2020
February 14, 2020 — The nuclear imaging equipment
Varian announced it has received FDA 510(k) clearance for its Ethos therapy, an Adaptive Intelligence solution. Ethos therapy is an artificial intelligence (AI)-driven holistic solution that provides an opportunity to transform cancer care.
News | Image Guided Radiation Therapy (IGRT) | February 11, 2020
February 11, 2020 — Varian announced it has received FDA 510(k) c
The radiation therapy market is projected to grow in through 2026

Image courtesy of Accuray

News | Proton Therapy | February 10, 2020
February 10, 2020 — Amid technological advancement, and notable research and development activities, the global ...
SIR President Laura Findeiss, M.D., FSIR

SIR President Laura Findeiss, M.D., FSIR

News | Interventional Radiology | February 09, 2020
February 9, 2020 — For some patients, kidney cancer can be effectively treated without surgery, according to the...
Accuray TomoTherapy total body irradiation
News | Radiation Therapy | February 07, 2020
February 7, 2020 — Accuray Incorporated announced that two new studies demonstrate the benefits of the ...
Purdue University-discovered fluorescent markers to target and illuminate cancer during surgery, has announced the results of a multi-institutional Phase 2 clinical trial in which outcomes were improved for 26 percent of patients undergoing pulmonary resection for non-small-cell lung cancer (NSCLC)

A Purdue discovery being developed by On Target Laboratories Inc., illuminates lung cancer cells on a patient during surgery. The “fluorescent markers” help medical professionals identify and remove cancer cells during surgery and is shown to improve outcomes. The technology is beginning Phase 3 clinical trials. (Photo provided by On Target)

News | Molecular Imaging | February 06, 2020
February 6, 2020 — ...
The luminescent oxygen probe PtG4 is injected during the week of radiation treatment and localizes between the cells of the tumor as illustrated by microscopy

An oxygen map image recovered from a mouse undergoing radiation therapy. The luminescent oxygen probe PtG4 is injected during the week of radiation treatment and localizes between the cells of the tumor as illustrated by microscopy (red). Image courtesy of Brian Pogue, PhD

News | Radiation Therapy | February 03, 2020
February 3, 2020 — Oxygen in cancer tumors is known to be a major factor that helps radiation therapy be successful.