News | Radiation Therapy | February 03, 2020

First Images of Oxygen in Cancer Tumors Captured During Radiation Therapy

Using specialty cameras and an oxygen probe drug injection, researchers at Dartmouth's Norris Cotton Cancer Center can now image oxygen from within cancer tumors during radiation while the probe is excited by Cherenkov light, a byproduct of radiation

The luminescent oxygen probe PtG4 is injected during the week of radiation treatment and localizes between the cells of the tumor as illustrated by microscopy

An oxygen map image recovered from a mouse undergoing radiation therapy. The luminescent oxygen probe PtG4 is injected during the week of radiation treatment and localizes between the cells of the tumor as illustrated by microscopy (red). Image courtesy of Brian Pogue, PhD

February 3, 2020 — Oxygen in cancer tumors is known to be a major factor that helps radiation therapy be successful. Hypoxia, or starvation of oxygen, in solid tumors is also thought to be an important factor in resistance to therapy. However, it is difficult to monitor tumor oxygenation without invasive sampling of oxygen distributions throughout the tissue, or without averaging across the whole tumor, whereas oxygen is highly heterogenous within a tumor. A research team at Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center led by Brian Pogue, Ph.D., has developed the first non-invasive way to directly monitor oxygen distributions within the tumor right at the time when radiation therapy is happening. With injection of an oxygen probe drug, PtG4, they are able to image the distribution of oxygen from within the tumor. The method measures the luminescence lifetimes of PtG4 while it is excited by the Cherenkov light emitted by the radiation therapy. The drug, PtG4, stays in the tumor for at least a week, and works for imaging repeatedly.

"The imaging is all done without any additional radiation, simply by using a camera to monitor the emissions during radiotherapy treatment," explains Pogue. "Following two tumor lines, one which is known to be responsive to radiation and one which is known to be resistant, we could see differences in the oxygenation of the tumor which are reflective of their differences in response." The team's findings, "Tissue pO2 Distributions in Xenograft Tumors Dynamically Imaged by Cherenkov-Excited Phosphorescence during Fractionated Radiation Therapy," are newly published in Nature Communications, by lead author, Xu Cao.

Pogue's team is able to capture oxygenation imaging through special technology. "We have a unique set of time-gated cameras in our radiation therapy department that were designed for Cherenkov-based radiation dosimetry, but we have used them for this additional purpose of monitoring oxygen in the tumors under treatment," said Pogue. "So access to these specialized Cherenkov cameras made the measurements possible." Pogue's team also collaborated with Professor Sergei Vinogradov and his team at the University of Pennsylvania Perelman School of Medicine, who produced the PtG4 and supported the work with drug characterization and co-supervision of the study.

Pogue hopes to develop this tumor monitoring ability into a useful clinical aid used to track tumor response to radiation therapy, especially tumors that are known to be hypoxic. Having such information available at the time of treatment could be helpful in influencing treatment decisions such as giving a radiation boost where needed. "When a patient gets radiation therapy, the treatment should be designed to directly utilize as much information about the patient's tumor as possible," said Pogue. "Today, we use the shape of the tumor and the tissue around it. But, we need to also think about using measurements of the tumor metabolism because this affects the success of treatment as well. Future radiation therapy treatments should ideally incorporate metabolic features such as oxygenation of the tumor when the treatment is planned or delivered."

The next steps toward this future are already underway. Pogue's team is looking to characterize how small of a region they can track the oxygenation from, and how fast they can take measurements. "Our goal is to produce oxygen images at video rate, with a spatial resolution that allows us to see radiobiologically relevant hypoxia nodules in the tumor of humans," explained Pogue.

Related Content

Novel scanners may open door for prognostic assessment in patients receiving cochlear implants

Iva Speck, MD, explains research showing that novel, fully digital, high-resolution positron emission tomography/computed tomography imaging of small brain stem nuclei can provide clinicians with valuable information concerning the auditory pathway in patients with hearing impairment. The research is featured in The Journal of Nuclear Medicine (read more at http://jnm.snmjournals.org/content/current). Video courtesy of Iva Speck, University Hospital Freiburg, Germany.

News | PET-CT | March 26, 2020
March 26, 2020 — Novel, fully digital, high-resolution...
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | March 19, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group

Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group. Racial/ethnic groups are mutually exclusive. Data for the non‐Hispanic American Indian/Alaska Native (AI/AN) population are restricted to Indian Health Service Purchased/Referred Care Delivery Area (PRCDA) counties. API indicates Asian/Pacific Islander. Chart courtesy of ACS Journals 

News | Radiation Oncology | March 16, 2020
March 16, 2020 — The Ann...
Accuray Incorporated announced that Mercy Hospital St. Louis continues to demonstrate its commitment to improving patient outcomes with the installation of the first CyberKnife M6 System in Missouri at their state-of-the-art David C. Pratt Cancer Center
News | Stereotactic Body Radiation Therapy (SBRT) | February 27, 2020
February 27, 2020 — Accuray Incorporated announced that Mercy
An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.