News | Breast Density | May 01, 2018

Computers Equal Radiologists in Assessing Breast Density and Associated Breast Cancer Risk

Automated and clinical assessment equally accurate in detecting screen-detected and interval cancers

Computers Equal Radiologists in Assessing Breast Density and Associated Breast Cancer Risk

May 1, 2018 — Automated breast density evaluation was just as accurate in predicting women’s risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, according to a new study. The study was led by researchers at the University of California San Francisco (UCSF) and Mayo Clinic.

Both assessment methods were equally accurate in predicting both the risk of cancer detected through mammography screening and the risk of interval invasive cancer (cancer diagnosed within a year of a negative mammography result). Both methods predicted interval cancer more strongly than screen-detected cancer. The study was published May 1, 2018, in the Annals of Internal Medicine.

Breast density can increase tumor aggressiveness, as well as mask the presence of tumors in mammograms, explained UCSF Professor of Medicine Karla Kerlikowske, M.D., who led the study with Mayo Clinic Professor of Epidemiology Celine Vachon, Ph.D. “This means that women with dense breasts are more likely to be diagnosed with advanced-stage breast cancers, especially those that are interval cancers, because their cancers are more likely to remain undetected for longer.”

“These findings demonstrate that breast-density evaluation can be done with equal accuracy by either a radiologist or an automated system,” said Kerlikowske. “They also show the potential value of a reproducible automated evaluation in helping identify women with dense breasts who are at higher risk of aggressive tumors, and thus more likely to be candidates for supplemental screening.”

Another important result of the study was that both automated and clinical breast density assessment methods were equally accurate at predicting both screen-detected and interval cancers when breast density was assessed within five years of cancer diagnosis.

“These findings have implications for breast cancer risk models, in particular those that predict risk of the more aggressive interval cancer,” said Vachon, the paper’s senior author. “Breast density measures can be used to inform a woman’s risk of screen- and/or interval-detected cancers up to five years after assessment.”

Thirty states have laws requiring that women receive notification of their breast density, which is graded on the standard four-category Breast Imaging Reporting and Data System (BI-RADS) scale:

  • a. almost entirely fatty;
  • b. scattered fibroglandular densities;
  • c. heterogeneously dense; and
  • d. extremely dense.

“Women who are accurately identified to have dense breasts and be at high risk of an interval cancer are more likely to have appropriate discussions of whether supplemental imaging is right for them,” said Kerlikowske.

The study, the largest of its kind to date, included 1,609 women with cancer detected within a year of a positive mammography result, 351 women with interval invasive cancer, and 4,409 control participants matched by age, race, state of residence, screening date and mammography machine. The participants came from screening practices in San Francisco and Rochester, Minn.

The researchers found that women with an automated BI-RADS assessment of extremely dense breasts had a 5.65 times higher risk of interval cancer and a 1.43 times higher risk of screen-detected cancer than women with scattered fibroglandular densities, the most common density category in average-risk women.

“There have been concerns raised about the reliability of BI-RADS breast density measures, since an assessment might vary for an individual woman depending on the radiologist and the mammogram,” observed Kerlikowske, who was first author on the paper. “Automated assessments, which are done by computer algorithm, are more reproducible and less subjective. Therefore, they could reduce variation and alleviate the sense of subjectivity and inconsistency.”

Co-authors of the study were Amir P. Mahmoudzadeh, MscEng, of UCSF; Christopher G. Scott, MS, Stacey Winham, PhD, Matthew R. Jensen, BS, and Fang Fang Wu, BS, of Mayo Clinic College of Medicine; Lin Ma, MS, of Kaiser Permanente Division of Research; Serghei Malkov, PhD, of Applied Materials; V. Shane Pankratz, PhD, of University of New Mexico; Steven R. Cummings, MD, of California Pacific Medical Center Research Institute; John A. Shepherd, PhD, of University of Hawaii; Kathleen R. Brandt, MD, of Mayo Clinic; and Diana L. Miglioretti, PhD, of UC Davis and Kaiser Permanente Washington Health Research Institute.

For more information: www.ucsf.edu

 

Related Content

Sponsored Content | Videos | Mammography | January 24, 2020
Imaging Technology News Contributing Editor Greg Freiherr interviewed...
Virtual reality during chemotherapy has been shown to improve breast cancer patients’ quality of life during the most stressful treatments
News | Virtual and Augmented Reality | January 21, 2020
January 21, 2020 — Virtual reality during chemotherapy has been shown to improve...
This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Researchers at Karolinska Institutet in Sweden and Tampere University in Finland have developed a method based on artificial intelligence (AI) for histopathological diagnosis and grading of prostate cancer

From left: Peter Ström, Martin Eklund, Kimmo Kartasalo, Henrik Olsson och Lars Egevad, researchers at Karolinska Institutet in Sweden. Photo courtesy of Stefan Zimmerman

News | Prostate Cancer | January 20, 2020
January 20, 2020 — Researchers at Karolinska Institutet in Sweden and...
Professor Samer Ezziddin, M.D., from Saarland University/Saarland University Hospital.

Professor Samer Ezziddin, M.D., from Saarland University/Saarland University Hospital. Image courtesy of Saarland University/Thorsten Mohr

 

News | Prostate Cancer | January 13, 2020
January 13, 2020 — When a non-scientist tries to imagine a scientist, the image that often arises is one of a somewha
The study found that DBN laws helped some women understand they had increased breast density, but not that breast density is associated with a higher risk of breast cancer or that dense breasts limit the ability of mammograms to detect cancer
News | Breast Density | January 09, 2020
January 9, 2020 — A new study suggests that state-mandated notifications on...
Sponsored Content | Videos | Digital Radiography (DR) | January 03, 2020
At RSNA19, David Widmann, president and CEO of Konica Minolta Healthcare Americas, discussed innovation, stressing th
prostate cancer UCL study
News | Prostate Cancer | January 03, 2020
January 3, 2020 — Nearly one in six deaths from...