Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Magnetic Resonance Imaging (MRI)| March 06, 2018

What The MR Accident in India Says About Us

While the imaging community may never have consciously put patients second, putting patients first is more than a numerical ranking.

Moral ambiguities don’t often come into play in medical imaging. Forget what Dr. House says ad nauseam on the syndicated doctor show. Nobody does exploratory surgery anymore. Seeing inside the body noninvasively is … duh!

But the digital revolution in imaging has created some issues, among them patient safety in computed tomography (CT) and magnetic resonance imaging (MRI). Concerns about the latter bounded to the front of the line with the story about a man in India who died in an MR accident (“Mumbai: Man dies after being sucked into MRI machine; doctor, ward boy arrested,” Indian Express, Jan. 29, 2018). The accident involved a medical oxygen tank brought into the magnetic field of a scanner.

In response to this report, we might bask smugly in reports about the safety of MR exams in this country, where medical oxygen tanks are typically made of nonferrous metal like aluminum and hospital staff are wise to the dangers of powerful magnetic fields. Neither is true in India.

The MR accident that killed Rajesh Maru was the second reported there in the last few years. Two staff were injured — but neither killed — when they were pulled into an MR in November 2014, according to a story published by the Mumbai Mirror. (“Two Stuck To MRI Machine For 4 Hrs,” Mumbai Mirror, Nov. 11, 2014.)

 

Why Accidents Happen

The tragic death in India highlights an unfortunate aspect of human nature, one that can turn a positive into a negative anywhere in the world. The Indian Express quoted Maru’s sister Priyanka Solanki, who saw the accident happen, as saying “instead of taking responsibility, the hospital workers scolded us for Rajesh having gone close to the MRI machine with the cylinder in his hand.”

Rajesh Maru was not a hospital employee. He was just trying to help. He was assisting his sister’s mother-in-law, the person who was to have been scanned. A hospital staffer had asked him to carry the tank into the suite.

Who was responsible for this accident? It’s easy to point to the hospital staff, as the Maru family did. It is also easy for the hospital to point to the family, which the hospital did. Someone familiar with the operation of MR scanners might instead point to ignorance by the hospital staff. But each misses the point.

It’s not about what was done, but what should have been done.

While accidents involving MR scanners are rare in the U.S., they do occur. And they happen regardless of the smarts or knowledge of staff. One example happened in 2014 at a hospital in Oakland, Calif., when a patient was apparently burned by the radiofrequency (RF) energy emitted by an MR scanner.

Electrical leads attached to the patient for an electrocardiogram (ECG) test done before the MR scan may have channeled the RF energy to the skin of the patient. The leads should have been removed when the ECG was done — long before the patient got on the table of the scanner. But the leads weren’t removed. (“Girl injured during MRI: experts say accidents rising,” Fox News 2 KTVU, Apr 28, 2015.)

At the time, the hospital denied liability, instead issuing a statement about its record for safety: “Last year, we safely and successfully performed over 6,000 MRIs at our hospital and outpatient centers.” The patient’s family attorney stated, according to KTVU, that the patient “slipped through the cracks.” The TV station went on to quote a member of the American Board of MR Safety as saying MR accidents were increasing and have been “for years and years.”

About the same time as this accident was happening, patients at Cedars Sinai Medical Center in Los Angeles were being routinely overexposed to CT radiation. During an 18-month span, 206 people were overexposed to ionizing radiation. The serial overexposures came to light only when a patient complained of hair loss following a CT exam.

Rather than point their collective finger at staff, hospital authorities blamed a “misunderstanding” due to an incorrectly programmed CT scanner. (See “Doctors ‘Shocked’ by Radiation Overexposure at Cedars-Sinai,” ABC News, Oct. 13, 2009.)

 

What Must Be Done

Accidents will happen until patients are put ahead of everything else.

Five years ago the Radiological Society of North America (RSNA) decked the McCormick Center during its annual meeting with banners proclaiming “Patients First.” While the imaging community may never have consciously put patients second, putting patients first is more than a numerical ranking.

Digital imaging has improved the detection of disease. It is indisputably better than exploratory surgery. But modern imaging only provides the tools to help patients. These tools can harm as well as help.

What people do with them determines which happens.

Related Content

MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
Brain images that have been pre-reviewed by the Viz.AI artificial intelligence software to identify a stroke. The software automatically sends and alert to the attending physician's smartphone with links to the imaging for a final human assessment to help speed the time to diagnosis and treatment. Depending on the type of stroke, quick action is needed to either activate the neuro-interventional lab or to administer tPA. Photo by Dave Fornell.

Brain images that have been pre-reviewed by the Viz.AI artificial intelligence software to identify a stroke. The software automatically sends and alert to the attending physician's smartphone with links to the imaging for a final human assessment to help speed the time to diagnosis and treatment. Depending on the type of stroke, quick action is needed to either activate the neuro-interventional lab or to administer tPA. Photo by Dave Fornell.

Feature | Artificial Intelligence | May 17, 2019 | Inga Shugalo
With its increasing role in medical imaging,...
Videos | Advanced Visualization | May 16, 2019
This is an example of how virtual reality is being used in neuro-radiology to better evaluate patients using advanced
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
Netherlands Hospital to Install State-of-the-Art MRI Ablation Center
News | Magnetic Resonance Imaging (MRI) | May 13, 2019
Imricor announced the signing of a commercial agreement with the Haga Hospital in The Hague, Netherlands to outfit a...