Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Radiology Imaging| June 01, 2016

Screening: How New Looks at Old Modalities Might Turn Imaging Upside Down

screening, imaging

Graphic courtesy Pixabay

Cancer screening is the only circumstance in which apparently healthy people subject themselves purposely to an agent known to cause cancer. It is the paradox of mammography, a screening tool that has substantially reduced breast cancer morbidity, whose success has only added to its paradoxical nature.

While mammography may be the most recognizable type of screening, it is not the only one. Ultrasound is widely used to screen for cardiovascular disease, for example. But, unlike mammography, it does not rely on ionizing radiation. Nor does magnetic resonance imaging (MRI), an imaging tool deemed too expensive — and limited in scope — for use in screening. But that could change.

Consider GLINT (glucoCEST Imaging of Neoplastic Tumors) — an MR-based technique being developed to visualize the body’s use of glucose. GLINT imaging is based on the use by tumors of massive amounts of glucose. This concept underlies the ability of positron emission tomography (PET) to spot the presence and recurrence of tumors. But, whereas PET exposes patients to ionizing radiation through the use of glucose molecules tagged with positron-emitting fluorine (as well as the computed tomography (CT) with which it is commonly paired), GLINT records hot spots coming from the use of non-labeled glucose.

 

Too Early To Tell

In a May 24 press release announcing the GLINT program, Vienna-based European Institute for Biomedical Imaging Research (EIBIR) framed the technique as a “game changer for cancer screening.”

This possibility is as exciting, as it is speculative.

GLINT is only a few months old, its development having been formally launched in January this year. Its four-year development program, guided by EIBIR, involves major universities, research institutes and corporations in seven countries – one in Israel, the others in Europe.

GLINT is being groomed as an MR technique for finding disease. It may be especially useful against cancer. But also might be used for other diseases. It may be very inexpensive. (The GLINT project group claims that this technique might be six to ten times less expensive than current MR techniques.) But a need for glucose analogues could negate those savings.

Clearly, much about GLINT is up in the air. One thing is for sure, however. GLINT is not going to replace mammography any time soon. It may never do so, unless the technique can be developed for use on dedicated, low-cost screening devices. The capital investment underlying MRI is substantial, far more so than mammography or ultrasound.

Intriguing, however, is the metabolic basis of this technique, which promises to transform MRI from an anatomical modality into molecular imaging. The practical implications are huge. According to the project team, the development and commercialization of glucoCEST MRI will “benefit the global cancer population by improving the diagnostic accuracy of MRI and providing early readouts of treatment efficacy, leading to improved clinical decisions and outcomes.”

While economic considerations might blunt GLINT’s role in screening, they might work in its favor as a means to monitor patients for cancer recurrence following therapy. This would be especially so for pediatric patients who may be monitored using PET/CT and, consequently, exposed to ionizing radiation periodically during their formative years and long after. Notably, the research team is looking specifically at pediatric lymphomas, as well as squamous cell carcinoma and primary gliomas.

 

Much Potential, Little Proven

GLINT might be used on these and other cancers. Adding to its appeal is the possibility that GLINT might even be used to find diseases other than cancer, thanks to its ability to image proteins, according to Prof. Klaus Scheffler, Ph.D., of the Max Planck institute for Biological Cybernetics in Tübingen.

In the near term, multi-site research teams are concentrating on cancer and the detection of native glucose (D-glucose) uptake in tumors. They are also reportedly looking into glucose analogues, such as 3-oxy-methyl-D-glucose. Because methylated analogues of sugar cannot be metabolized, they might serve as tracers.

While such studies keep GLINT in the cancer wheelhouse, they raise questions about a basic premise underlying the development of this technique — its potential for low-cost exams. The use of such tracers would undoubtedly add to the expense.

Pushing such considerations aside is the exciting nature of GLINT — what its development signifies for the medical imaging community — that free thinkers are looking at an established modality not for what it is but for what it might be.

GLINT is the result of thinking outside the box, of asking “why not?” This begs the question: What other wonders of medical imaging might be similarly unlocked if the status quo is challenged?

 

Editor's note: This is the first blog in a four-part series on screening

Related Content

The Revolution Apex intelligent computed tomography (CT) scanner

The Revolution Apex intelligent computed tomography (CT) scanner. Image courtesy of GE Healthcare.

News | RSNA | October 18, 2019
At the 2019 annual meeting of the Radiological Society of North America (RSNA 2019), Dec. 1-6 in Chicago, GE Healthcare...
MaxQ AI's Intracranial Hemorrhage Software to be Integrated on Philips CT Systems
News | Artificial Intelligence | October 18, 2019
Medical diagnostic artificial intelligence (AI) company MaxQ AI announced that its Accipio intracranial hemorrhage (ICH...
Sectra Adds DePuy Synthes 3-D Templates to Pre-Operative Orthopedic Solution
News | Orthopedic Imaging | October 17, 2019
International medical imaging information technology (IT) and cybersecurity company Sectra is extending its pre-...
A patient prepares to have a tomosynthesis-guided prone breast biopsy using the Hologic Affirm prone biopsy system.

A patient prepares to have a tomosynthesis-guided prone breast biopsy using the Hologic Affirm prone biopsy system.

Feature | Breast Biopsy Systems | October 17, 2019 | By Harriet Borofsky, M.D.
The current body of research supporting...
An illustration of radiology department analytics data showing GE Healthcare’s business analytics software.

An illustration of radiology department analytics data showing GE Healthcare’s business analytics software.

Feature | Radiology Business | October 17, 2019 | By April Wilson
According to IBM, the world creates 2.5 quintillion bytes of data daily.
Image courtesy of Bethesda Health

Image courtesy of Bethesda Health

Feature | Radiology Business | October 17, 2019 | By Susan DeCathelineau
Few professions have experienced the dramatic changes that radiologists have over the past few years.
GE Healthcare and Theragnostics Partnering on PSMA PET/CT Imaging Agent
News | Prostate Cancer | October 16, 2019
GE Healthcare and Theragnostics have entered into a global commercial partnership for a new prostate-specific membrane...
Guerbet Signs Agreement With Icometrix for Exclusive Distribution of Icobrain
News | Neuro Imaging | October 16, 2019
Guerbet announced it has signed an exclusive agreement with Icometrix for the distribution in France, Italy and Brazil...
Subtle Medical Receives FDA 510(k) Clearance for AI-powered SubtleMR
Technology | Artificial Intelligence | October 16, 2019
Subtle Medical announced 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market SubtleMR. SubtleMR...
Using Compressed SENSE for faster MRI scans, healthcare providers can transform their radiology workflow.

Using Compressed SENSE for faster MRI scans, healthcare providers can transform their radiology workflow.

Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | October 16, 2019
Since the introduction of magnetic resonan...