News | Radiopharmaceuticals and Tracers | June 05, 2019

BGN Technologies Introduces Novel Medical Imaging Radioisotope Production Method

Novel technique enables simultaneous production of molybdenum-99 and other isotopes without the need for highly enriched, weapons-grade uranium

BGN Technologies Introduces Novel Medical Imaging Radioisotope Production Method

June 5, 2019 – BGN Technologies, the technology transfer company of Ben-Gurion University (BGU), introduced a novel method for producing radioisotopes for nuclear medicine and medical imaging technologies such as computed tomography (CT) scan and positron emission tomography-computed tomography (PET-CT).

Developed by Alexander Tsechanski, Ph.D., from the BGU Department of Nuclear Engineering, the new technique obviates the need for highly enriched, weapons-grade uranium and a nuclear reactor. Nuclear medicine often necessitates the use of technetium-99m (Tc-99m) as the isotope for imaging, an unstable technetium isotope with a only a six-hour half-life that requires onsite production. In order to produce it in an economically efficient way, currently it requires weapons-grade, highly enriched uranium and a nuclear reactor to generate molybdenum-99 (Mo-99), which decays into technetium-99m (Tc-99m).

The new invention uses the naturally occurring and stable molybdenum-100 (Mo-100) isotope and a linear electron accelerator to generate Mo-99 and Tc-99m1. This process can also simultaneously generate other short-lived radioisotopes such as F-18, O-15, N-13 and C-11 as byproducts for use in PET scans.

BGN Technologies said it is currently looking for partners for further developing and commercializing the technology.

For more information: www.in.bgu.ac.il

Related Radiopharmaceuticals Content

Shine Medical Technologies Breaks Ground on U.S. Medical Isotope Production Facility

University of Missouri Research Reactor Files to Start U.S. Production of Medical Isotopes

FDA Clears Path for First Domestic Supply of Tc-99m Isotope

Reference

1. Fedorchenkoa D.V. and Tsechanski A. Photoneutronic aspects of the molybdenum-99 production by means of electron linear accelerators. Nuclear Inst. and Methods in Physics Research B, published online Oct. 23, 2018. https://doi.org/10.1016/j.nimb.2018.10.018

Related Content

Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can bee seen in this photo on either side of the patient bed. These can be rotated above the patient.

Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can be seen in this photo on either side of the patient bed. These can be rotated above the patient.

Feature | Nuclear Imaging | November 05, 2019 | Dave Fornell, Editor
November 5, 2019 — Philips Medical System is recalling the Forte Gamma Camera System due to the potential for the 660
 Phoenix’s fusion neutron generation technology.
News | Radiopharmaceuticals and Tracers | October 28, 2019
October 28, 2019 — Phoenix LLC and Shine Medical Technologies LLC, nuclear technology companies focused on near-term
GE Healthcare and Theragnostics Partnering on PSMA PET/CT Imaging Agent
News | Prostate Cancer | October 16, 2019
GE Healthcare and Theragnostics have entered into a global commercial partnership for a new prostate-specific membrane...
RefleXion Highlights Novel Approach to Radiotherapy at ASTRO 2019

The RefleXion X1 Machine without the Gantry Cover. The patented technology incorporates PET imaging data, which enables tumors to continuously signal their location. Image courtesy of Reflexion Medical.

News | Radiation Therapy | September 12, 2019
Therapeutic oncology company RefleXion Medical announced it will showcase the RefleXion X1 Machine at the American...
ASNC Announces Multisocietal Cardiac Amyloidosis Imaging Consensus
News | Cardiac Imaging | September 09, 2019
September 9, 2019 — The American Society of Nuclear Cardiology (ASNC) published a new expert consensus document along
A 3-D printed tungsten pre-clinical X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten pre-clinical X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | September 04, 2019 | By Steve Jeffery
In ...
A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one hold out who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one holdout who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

Feature | Nuclear Imaging | August 30, 2019 | Dave Fornell, Editor
In a surprising move, the National Institute for Radioelements (IRE) has applied for a new license to export highly e
University of Alabama at Birmingham Leading Production of Theranostic Radioisotope

Image courtesy of the University of Alabama at Birmingham

News | Radiopharmaceuticals and Tracers | August 29, 2019
The University of Alabama at Birmingham, in conjunction with researchers at the University of Wisconsin and Argonne...
United Imaging Announces First U.S. Clinical Installation of uExplorer Total-body PET/CT
News | PET-CT | August 15, 2019
United Imaging announced that its uExplorer total-body positron emission tomography/computed tomography (PET/CT) system...